人工智能在肺癌筛查中的体成分分析:除了肺癌检测之外的附加价值。

AI Body Composition in Lung Cancer Screening: Added Value Beyond Lung Cancer Detection.

机构信息

From the Department of Computer Science (K.X., Y.H., T.A.L., B.A.L.), Department of Biomedical Engineering (T.Z.L., B.A.L.), School of Medicine (T.Z.L.), and Department of Electrical and Computer Engineering (Y.H., B.A.L.), Vanderbilt University, 2301 Vanderbilt Pl, Nashville, TN 37235; University of Missouri-Kansas City, Kansas City, Mo (M.S.K.); Saint Luke's Mid America Heart Institute, Kansas City, Mo (M.S.K.); Siemens Healthineers, Princeton, NJ (R.G.); Department of Radiology (J.G.T., J.J.C., B.A.L., K.L.S.), Department of Biomedical Informatics (T.A.L., J.J.C., B.A.L.), Division of Cardiovascular Medicine (J.J.C.), Division of Allergy, Pulmonary and Critical Care Medicine (F.M.), Vanderbilt University Institute of Imaging Science (B.A.L.), Vanderbilt Brain Institute (B.A.L.), Department of Psychiatry and Behavioral Sciences (B.A.L.), Department of Neurology (B.A.L.), and Vanderbilt Memory & Alzheimer's Center (B.A.L.), Vanderbilt University Medical Center, Nashville, Tenn.

出版信息

Radiology. 2023 Jul;308(1):e222937. doi: 10.1148/radiol.222937.

Abstract

Background An artificial intelligence (AI) algorithm has been developed for fully automated body composition assessment of lung cancer screening noncontrast low-dose CT of the chest (LDCT) scans, but the utility of these measurements in disease risk prediction models has not been assessed. Purpose To evaluate the added value of CT-based AI-derived body composition measurements in risk prediction of lung cancer incidence, lung cancer death, cardiovascular disease (CVD) death, and all-cause mortality in the National Lung Screening Trial (NLST). Materials and Methods In this secondary analysis of the NLST, body composition measurements, including area and attenuation attributes of skeletal muscle and subcutaneous adipose tissue, were derived from baseline LDCT examinations by using a previously developed AI algorithm. The added value of these measurements was assessed with sex- and cause-specific Cox proportional hazards models with and without the AI-derived body composition measurements for predicting lung cancer incidence, lung cancer death, CVD death, and all-cause mortality. Models were adjusted for confounding variables including age; body mass index; quantitative emphysema; coronary artery calcification; history of diabetes, heart disease, hypertension, and stroke; and other PLCO lung cancer risk factors. Goodness-of-fit improvements were assessed with the likelihood ratio test. Results Among 20 768 included participants (median age, 61 years [IQR, 57-65 years]; 12 317 men), 865 were diagnosed with lung cancer and 4180 died during follow-up. Including the AI-derived body composition measurements improved risk prediction for lung cancer death (male participants: χ = 23.09, < .001; female participants: χ = 15.04, = .002), CVD death (males: χ = 69.94, < .001; females: χ = 16.60, < .001), and all-cause mortality (males: χ = 248.13, < .001; females: χ = 94.54, < .001), but not for lung cancer incidence (male participants: χ = 2.53, = .11; female participants: χ = 1.73, = .19). Conclusion The body composition measurements automatically derived from baseline low-dose CT examinations added predictive value for lung cancer death, CVD death, and all-cause death, but not for lung cancer incidence in the NLST. Clinical trial registration no. NCT00047385 © RSNA, 2023 See also the editorial by Fintelmann in this issue.

摘要

背景 已经开发出一种人工智能 (AI) 算法,用于全自动评估肺癌筛查非增强低剂量胸部 CT(LDCT)扫描的身体成分,但这些测量值在疾病风险预测模型中的应用尚未得到评估。目的 在国家肺癌筛查试验 (NLST) 中,评估 CT 基于 AI 衍生的身体成分测量值在预测肺癌发病率、肺癌死亡率、心血管疾病(CVD)死亡率和全因死亡率方面的附加价值。材料和方法 本研究为 NLST 的二次分析,使用先前开发的 AI 算法从基线 LDCT 检查中提取身体成分测量值,包括骨骼肌和皮下脂肪组织的面积和衰减属性。使用包含和不包含 AI 衍生的身体成分测量值的性别特异性和病因特异性 Cox 比例风险模型评估这些测量值的附加价值,以预测肺癌发病率、肺癌死亡率、CVD 死亡率和全因死亡率。模型调整了混杂变量,包括年龄、体重指数、定量肺气肿、冠状动脉钙化、糖尿病、心脏病、高血压和中风史以及其他 PLCO 肺癌风险因素。通过似然比检验评估拟合优度的改善。结果 在 20768 名纳入参与者(中位年龄,61 岁 [IQR,57-65 岁];12317 名男性)中,865 人被诊断患有肺癌,4180 人在随访期间死亡。包含 AI 衍生的身体成分测量值可改善肺癌死亡(男性参与者:χ=23.09,<.001;女性参与者:χ=15.04,<.001)、CVD 死亡(男性:χ=69.94,<.001;女性:χ=16.60,<.001)和全因死亡率(男性:χ=248.13,<.001;女性:χ=94.54,<.001)的风险预测,但不能预测肺癌发病率(男性参与者:χ=2.53,=.11;女性参与者:χ=1.73,=.19)。结论 从基线 LDCT 检查中自动提取的身体成分测量值增加了 NLST 中肺癌死亡、CVD 死亡和全因死亡的预测价值,但不能预测肺癌发病率。临床试验注册号 NCT00047385 © RSNA,2023 还请参阅本期的 Fintelmann 社论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0aa/10374937/7de4ee6b64b6/radiol.222937.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索