Künnemann Marc-David, Römer Christian, Helfen Anne, Bleckmann Annalen, Kemper Marcel, Heindel Walter, Brix Tobias J, Forsting Michael, Haubold Johannes, Opitz Marcel, Schuler Martin, Nensa Felix, Borys Katarzyna, Hosch René
Clinic for Radiology, University of Münster and University Hospital Münster, Münster, Germany.
West German Cancer Center (WTZ), University Hospital Münster, Münster, Germany.
J Cachexia Sarcopenia Muscle. 2025 Aug;16(4):e70021. doi: 10.1002/jcsm.70021.
AI-driven automated body composition analysis (BCA) may provide quantitative prognostic biomarkers derived from routine staging CTs. This two-centre study evaluates the prognostic value of these volumetric markers for overall survival in lung cancer patients.
Lung cancer cohorts from Hospital A (n = 3345, median age 65, 86% NSCLC, 40% M1, 40% female) and B (n = 1364, median age 66, 87% NSCLC, 37% M1, 38% female) underwent automated BCA of abdominal CTs ±60 days of primary diagnosis. A deep learning network segmented muscle, bone and adipose tissues (visceral = VAT, subcutaneous = SAT, intra-/intermuscular = IMAT and total = TAT) to derive three markers: Sarcopenia Index (SI = Muscle/Bone), Myosteatotic Fat Index (MFI = IMAT/TAT) and Abdominal Fat Index (AFI = VAT/SAT). Kaplan-Meier survival analysis, Cox proportional hazards modelling and machine learning-based survival prediction were performed. A survival model including clinical data (BMI, ECOG, L3-SMI, -SATI, -VATI and -IMATI) was fitted on Hospital A data and validated on Hospital B data.
In nonmetastatic NSCLC, high SI predicted longer survival across centres for males (Hospital A: 24.6 vs. 46.0 months; Hospital B: 13.3 vs. 28.9 months; both p < 0.001) and females (Hospital A: 37.9 vs. 53.6 months, p = 0.008; Hospital B: 23.0 vs. 28.6 months, p = 0.018). High MFI indicated reduced survival in males at both hospitals (Hospital A: 43.7 vs. 28.2 months; Hospital B: 28.8 vs. 14.3 months; both p ≤ 0.001) but showed center-dependent effects in females (significant only in Hospital A, p < 0.01). In metastatic disease, SI remained prognostic for males at both centres (p < 0.05), while MFI was significant only in Hospital A (p ≤ 0.001) and AFI only in Hospital B (p = 0.042). Multivariate Cox regression confirmed that higher SI was protective (A: HR 0.53, B: 0.59, p ≤ 0.001), while MFI was associated with shorter survival (A: HR 1.31, B: 1.12, p < 0.01). The multivariate survival model trained on Hospital A's data demonstrated prognostic differentiation of groups in internal (n = 209, p ≤ 0.001) and external (Hospital B, n = 361, p = 0.044) validation, with SI feature importance (0.037) ranking below ECOG (0.082) and M-status (0.078), outperforming all other features including conventional L3-single-slice measurements.
CT-based volumetric BCA provides prognostic biomarkers in lung cancer with varying significance by sex, disease stage and centre. SI was the strongest prognostic marker, outperforming conventional L3-based measurements, while fat-related markers showed varying associations. Our multivariate model suggests that BCA markers, particularly SI, may enhance risk stratification in lung cancer, pending centre-specific and sex-specific validation. Integration of these markers into clinical workflows could enable personalized care and targeted interventions for high-risk patients.
人工智能驱动的自动身体成分分析(BCA)可能会从常规分期CT中提供定量的预后生物标志物。这项双中心研究评估了这些体积标志物对肺癌患者总生存期的预后价值。
来自医院A(n = 3345,中位年龄65岁,86%为非小细胞肺癌,40%为M1期,40%为女性)和医院B(n = 1364,中位年龄66岁,87%为非小细胞肺癌,37%为M1期,38%为女性)的肺癌队列在初次诊断后±60天接受了腹部CT的自动BCA。一个深度学习网络对肌肉、骨骼和脂肪组织(内脏 = VAT、皮下 = SAT、肌内/肌间 = IMAT、总和 = TAT)进行分割,以得出三个标志物:肌肉减少症指数(SI = 肌肉/骨骼)、肌脂性脂肪指数(MFI = IMAT/TAT)和腹部脂肪指数(AFI = VAT/SAT)。进行了Kaplan-Meier生存分析、Cox比例风险建模和基于机器学习的生存预测。一个包含临床数据(BMI、ECOG、L3-SMI、-SATI、-VATI和-IMATI)的生存模型在医院A的数据上进行拟合,并在医院B的数据上进行验证。
在非转移性非小细胞肺癌中,高SI预测男性在两个中心的生存期更长(医院A:24.6个月对46.0个月;医院B:13.3个月对28.9个月;均p < 0.001),女性也是如此(医院A:37.9个月对53.6个月,p = 0.008;医院B:23.0个月对28.6个月,p = 0.018)。高MFI表明两家医院男性的生存期缩短(医院A:43.7个月对28.2个月;医院B:28.8个月对14.3个月;均p ≤ 0.001),但在女性中显示出中心依赖性影响(仅在医院A显著,p < 0.01)。在转移性疾病中,SI在两个中心对男性仍具有预后意义(p < 0.05),而MFI仅在医院A显著(p ≤ 0.001),AFI仅在医院B显著(p = 0.042)。多变量Cox回归证实,较高的SI具有保护作用(A:HR 0.53,B:0.59,p ≤ 0.001),而MFI与较短的生存期相关(A:HR 1.31,B:1.12,p < 0.01)。在医院A的数据上训练的多变量生存模型在内部(n = 209,p ≤ 0.001)和外部(医院B,n = 361,p = 0.044)验证中显示出组间的预后差异,SI特征重要性(0.037)低于ECOG(0.082)和M分期(0.078),优于所有其他特征,包括传统的L3单切片测量。
基于CT的体积BCA为肺癌提供了具有不同意义的预后生物标志物,其因性别、疾病分期和中心而异。SI是最强的预后标志物,优于传统的基于L3的测量,而与脂肪相关的标志物显示出不同的关联。我们