Suppr超能文献

通过定量身体成分评估扩展常规肺部筛查CT的价值。

Extending the value of routine lung screening CT with quantitative body composition assessment.

作者信息

Xu Kaiwen, Gao Riqiang, Tang Yucheng, Deppen Steve A, Sandler Kim L, Kammer Michael N, Antic Sanja L, Maldonado Fabien, Huo Yuankai, Khan Mirza S, Landman Bennett A

机构信息

Department of Computer Science, Vanderbilt University, Nashville TN, USA 37235.

Department of Electrical and Computer Engineering, Vanderbilt University, Nashville TN, USA 37235.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2611784. Epub 2022 Apr 4.

Abstract

Certain body composition phenotypes, like sarcopenia, are well established as predictive markers for post-surgery complications and overall survival of lung cancer patients. However, their association with incidental lung cancer risk in the screening population is still unclear. We study the feasibility of body composition analysis using chest low dose computed tomography (LDCT). A two-stage fully automatic pipeline is developed to assess the cross-sectional area of body composition components including subcutaneous adipose tissue (SAT), muscle, visceral adipose tissue (VAT), and bone on T5, T8 and T10 vertebral levels. The pipeline is developed using 61 cases of the VerSe'20 dataset, 40 annotated cases of NLST, and 851 inhouse screening cases. On a test cohort consisting of 30 cases from the inhouse screening cohort (age 55 - 73, 50% female) and 42 cases of NLST (age 55 - 75, 59.5% female), the pipeline achieves a root mean square error (RMSE) of 7.25 mm (95% CI: [6.61, 7.85]) for the vertebral level identification and mean Dice similarity score (DSC) 0.99 ± 0.02, 0.96 ± 0.03, and 0.95 ± 0.04 for SAT, muscle, and VAT, respectively for body composition segmentation. The pipeline is generalized to the CT arm of the NLST dataset (25,205 subjects, 40.8% female, 1,056 lung cancer incidences). Time-to-event analysis for lung cancer incidence indicates inverse association between measured muscle cross-sectional area and incidental lung cancer risks (p < 0.001 female, p < 0.001 male). In conclusion, automatic body composition analysis using routine lung screening LDCT is feasible.

摘要

某些身体成分表型,如肌肉减少症,已被确认为肺癌患者术后并发症和总体生存的预测标志物。然而,它们与筛查人群中偶发性肺癌风险的关联仍不明确。我们研究了使用胸部低剂量计算机断层扫描(LDCT)进行身体成分分析的可行性。开发了一个两阶段的全自动流程,以评估包括皮下脂肪组织(SAT)、肌肉、内脏脂肪组织(VAT)和T5、T8和T10椎体水平的骨骼在内的身体成分组件的横截面积。该流程是使用VerSe'20数据集的61例病例、NLST的40例标注病例和851例内部筛查病例开发的。在一个由30例内部筛查队列病例(年龄55 - 73岁,50%为女性)和42例NLST病例(年龄55 - 75岁,59.5%为女性)组成的测试队列中,该流程在椎体水平识别方面的均方根误差(RMSE)为7.25毫米(95%置信区间:[6.61, 7.85]),在身体成分分割方面,SAT、肌肉和VAT的平均骰子相似性得分(DSC)分别为0.99±0.02、0.96±0.03和0.95±0.04。该流程被推广到NLST数据集的CT组(25,205名受试者,40.8%为女性,1,056例肺癌发病率)。肺癌发病率的事件发生时间分析表明,测量的肌肉横截面积与偶发性肺癌风险之间存在负相关(女性p < 0.001,男性p < 0.001)。总之,使用常规肺部筛查LDCT进行自动身体成分分析是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验