IEEE J Biomed Health Inform. 2023 Oct;27(10):4902-4913. doi: 10.1109/JBHI.2023.3298710. Epub 2023 Oct 5.
Due to the high labor cost of physicians, it is difficult to collect a rich amount of manually-labeled medical images for developing learning-based computer-aided diagnosis (CADx) systems or segmentation algorithms. To tackle this issue, we reshape the image segmentation task as an image-to-image (I2I) translation problem and propose a retinal vascular segmentation network, which can achieve good cross-domain generalizability even with a small amount of training data. We devise primarily two components to facilitate this I2I-based segmentation method. The first is the constraints provided by the proposed gradient-vector-flow (GVF) loss, and, the second is a two-stage Unet (2Unet) generator with a skip connection. This configuration makes 2Unet's first-stage play a role similar to conventional Unet, but forces 2Unet's second stage to learn to be a refinement module. Extensive experiments show that by re-casting retinal vessel segmentation as an image-to-image translation problem, our I2I translator-based segmentation subnetwork achieves better cross-domain generalizability than existing segmentation methods. Our model, trained on one dataset, e.g., DRIVE, can produce segmentation results stably on datasets of other domains, e.g., CHASE-DB1, STARE, HRF, and DIARETDB1, even in low-shot circumstances.
由于医生的劳动力成本很高,因此很难收集到大量用于开发基于学习的计算机辅助诊断 (CADx) 系统或分割算法的手动标记医学图像。为了解决这个问题,我们将图像分割任务重新定义为图像到图像 (I2I) 转换问题,并提出了一种视网膜血管分割网络,即使在训练数据很少的情况下,也能实现良好的跨域泛化能力。我们设计了两个主要组件来促进这种基于 I2I 的分割方法。第一个是由我们提出的梯度矢量流 (GVF) 损失提供的约束,第二个是具有跳过连接的两阶段 U-Net (2Unet) 生成器。这种配置使得 2Unet 的第一阶段发挥类似于传统 U-Net 的作用,但迫使 2Unet 的第二阶段学习成为一个细化模块。广泛的实验表明,通过将视网膜血管分割重新定义为图像到图像的转换问题,我们基于 I2I 翻译器的分割子网在跨域泛化方面的表现优于现有的分割方法。我们的模型在一个数据集(例如 DRIVE)上进行训练,即使在数据量较少的情况下,也可以稳定地在其他数据集(例如 CHASE-DB1、STARE、HRF 和 DIARETDB1)上产生分割结果。