Suppr超能文献

视网膜血管网络:一种用于稳健视网膜微血管检测的深度学习方法。

RetinalVasNet: a deep learning approach for robust retinal microvasculature detection.

作者信息

Yao Zhaomin, Xing Cengcong, Zhu Gancheng, Xie Weiming, Wang Zhiguo, Zhang Guoxu

机构信息

Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China.

出版信息

Front Mol Biosci. 2025 Aug 14;12:1562608. doi: 10.3389/fmolb.2025.1562608. eCollection 2025.

Abstract

INTRODUCTION

The retinal microvasculature has been definitively linked to a variety of diseases, such as ophthalmological, cardiovascular, and other medical conditions. Precisely identifying the retinal microvasculature is crucial for early detection and monitoring of these diseases. While the majority of existing neural network-based research has primarily focused on utilizing the green channel of fundus images for vessel segmentation, it is important to acknowledge the potential value of other channels in this process.

METHODS

This study introduces RetinalVasNet, a new method aimed at enhancing the accuracy and effectiveness of retinal vascular segmentation by implementing a sophisticated neural network architecture and incorporating multi-channel fundus images.

RESULTS

Our experimental results demonstrate that RetinalVasNet outperforms previous research in most performance metrics.

DISCUSSION

The findings suggest that each channel provides unique contributions to the vascular segmentation process, emphasizing the importance of incorporating multiple channels for accurate and comprehensive segmentation.

摘要

引言

视网膜微血管系统已被明确与多种疾病相关联,如眼科疾病、心血管疾病及其他病症。精确识别视网膜微血管系统对于这些疾病的早期检测和监测至关重要。虽然现有的大多数基于神经网络的研究主要集中于利用眼底图像的绿色通道进行血管分割,但在此过程中认识到其他通道的潜在价值也很重要。

方法

本研究介绍了RetinalVasNet,这是一种旨在通过实施复杂的神经网络架构并纳入多通道眼底图像来提高视网膜血管分割准确性和有效性的新方法。

结果

我们的实验结果表明,RetinalVasNet在大多数性能指标上优于先前的研究。

讨论

研究结果表明,每个通道对血管分割过程都有独特的贡献,强调了纳入多个通道以进行准确和全面分割的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b518/12390797/6d12636fe2c1/fmolb-12-1562608-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验