van Garderen Karin A, van der Voort Sebastian R, Wijnenga Maarten M J, Incekara Fatih, Alafandi Ahmad, Kapsas Georgios, Gahrmann Renske, Schouten Joost W, Dubbink Hendrikus J, Vincent Arnaud J P E, van den Bent Martin, French Pim J, Smits Marion, Klein Stefan
IEEE Trans Med Imaging. 2024 Jan;43(1):253-263. doi: 10.1109/TMI.2023.3298637. Epub 2024 Jan 2.
Tumor growth models have the potential to model and predict the spatiotemporal evolution of glioma in individual patients. Infiltration of glioma cells is known to be faster along the white matter tracts, and therefore structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) can be used to inform the model. However, applying and evaluating growth models in real patient data is challenging. In this work, we propose to formulate the problem of tumor growth as a ranking problem, as opposed to a segmentation problem, and use the average precision (AP) as a performance metric. This enables an evaluation of the spatial pattern that does not require a volume cut-off value. Using the AP metric, we evaluate diffusion-proliferation models informed by structural MRI and DTI, after tumor resection. We applied the models to a unique longitudinal dataset of 14 patients with low-grade glioma (LGG), who received no treatment after surgical resection, to predict the recurrent tumor shape after tumor resection. The diffusion models informed by structural MRI and DTI showed a small but significant increase in predictive performance with respect to homogeneous isotropic diffusion, and the DTI-informed model reached the best predictive performance. We conclude there is a significant improvement in the prediction of the recurrent tumor shape when using a DTI-informed anisotropic diffusion model with respect to istropic diffusion, and that the AP is a suitable metric to evaluate these models. All code and data used in this publication are made publicly available.
肿瘤生长模型有潜力对个体患者脑胶质瘤的时空演变进行建模和预测。已知胶质瘤细胞沿白质束的浸润速度更快,因此结构磁共振成像(MRI)和扩散张量成像(DTI)可用于为该模型提供信息。然而,在真实患者数据中应用和评估生长模型具有挑战性。在这项工作中,我们提议将肿瘤生长问题表述为一个排序问题,而非分割问题,并使用平均精度(AP)作为性能指标。这使得能够对不需要体积截止值的空间模式进行评估。使用AP指标,我们在肿瘤切除后评估了由结构MRI和DTI提供信息的扩散 - 增殖模型。我们将这些模型应用于一个独特的纵向数据集,该数据集包含14例低级别胶质瘤(LGG)患者,他们在手术切除后未接受任何治疗,以预测肿瘤切除后的复发性肿瘤形状。由结构MRI和DTI提供信息的扩散模型相对于均匀各向同性扩散在预测性能上有小幅但显著的提升,且由DTI提供信息的模型达到了最佳预测性能。我们得出结论,相对于各向同性扩散,使用由DTI提供信息的各向异性扩散模型在预测复发性肿瘤形状方面有显著改善,并且AP是评估这些模型的合适指标。本出版物中使用的所有代码和数据均已公开提供。