Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India.
Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India.
Sci Rep. 2024 Aug 27;14(1):19844. doi: 10.1038/s41598-024-70627-9.
Glioma, a predominant type of brain tumor, can be fatal. This necessitates an early diagnosis and effective treatment strategies. Current diagnosis is based on biopsy, prompting the need for non invasive neuroimaging alternatives. Diffusion tensor imaging (DTI) is a promising method for studying the pathophysiological impact of tumors on white matter (WM) tissue. Single-shell DTI studies in brain glioma patients have not accounted for free water (FW) contamination due to tumors. This study aimed to (a) assess the efficacy of a two-compartment DTI model that accounts for FW contamination and (b) identify DTI-based biomarkers to classify low-grade glioma (LGG) and high-grade glioma (HGG) patients. DTI data from 86 patients (LGG n = 39, HGG n = 47) were obtained using a routine clinical imaging protocol. DTI metrics of tumorous regions and normal-appearing white matter (NAWM) were evaluated. Advanced stacked-based ensemble learning was employed to classify LGG and HGG patients using both single- and two-compartment DTI model measures. The DTI metrics of the two-compartment model outperformed those of the standard single-compartment DTI model in terms of sensitivity, specificity, and area under the curve of receiver operating characteristic (AUC-ROC) score in classifying LGG and HGG patients. Four features (out of 16 features), namely fractional anisotropy (FA) of the edema and core region and FA and mean diffusivity of the NAWM region, showed superior performance (sensitivity = 92%, specificity = 90%, and AUC-ROC = 90%) in classifying LGG and HGG. This demonstrates that both tumorous and NAWM regions may be differentially affected in LGG and HGG patients. Our results demonstrate the significance of using a two-compartment DTI model that accounts for FW contamination by improving diagnostic accuracy. This improvement may eventually aid in planning treatment strategies for glioma patients.
脑肿瘤中胶质母细胞瘤是一种主要类型,可能致命。这需要早期诊断和有效的治疗策略。目前的诊断基于活检,这促使我们需要寻找非侵入性的神经影像学替代方法。弥散张量成像(DTI)是研究肿瘤对白质(WM)组织的病理生理影响的一种很有前途的方法。脑胶质母细胞瘤患者的单壳层 DTI 研究尚未考虑到肿瘤引起的自由水(FW)污染。本研究旨在(a)评估一种考虑 FW 污染的两室 DTI 模型的有效性,(b)识别基于 DTI 的生物标志物来分类低级别胶质瘤(LGG)和高级别胶质瘤(HGG)患者。使用常规临床成像方案从 86 名患者(LGG n=39,HGG n=47)中获得 DTI 数据。评估肿瘤区域和正常表现的白质(NAWM)的 DTI 指标。使用高级堆叠式集成学习,使用单室和双室 DTI 模型的测量值来分类 LGG 和 HGG 患者。在分类 LGG 和 HGG 患者方面,两室模型的 DTI 指标在灵敏度、特异性和曲线下面积(AUC-ROC)评分方面均优于标准单室 DTI 模型。在分类 LGG 和 HGG 中,有四个特征(16 个特征中的 4 个)表现较好,即水肿和核心区域的各向异性分数(FA)以及 NAWM 区域的 FA 和平均弥散系数,具有较高的性能(灵敏度=92%,特异性=90%,AUC-ROC=90%)。这表明在 LGG 和 HGG 患者中,肿瘤和 NAWM 区域可能受到不同的影响。我们的结果表明,使用考虑 FW 污染的两室 DTI 模型可以提高诊断准确性,这可能最终有助于为胶质母细胞瘤患者制定治疗策略。