Suppr超能文献

一种用于社交媒体分析以识别相关消息的深度语义匹配方法。

A deep semantic matching approach for identifying relevant messages for social media analysis.

作者信息

Biggers Frederick Brown, Mohanty Somya D, Manda Prashanti

机构信息

Artificial Intelligence and Natural Language Processing, United Health Group, Raleigh, NC, USA.

Electronic Resources and Information Technology, University of North Carolina at Greensboro, Greensboro, NC, USA.

出版信息

Sci Rep. 2023 Jul 25;13(1):12005. doi: 10.1038/s41598-023-38761-y.

Abstract

There is a growing interest in using social media content for Natural Language Processing applications. However, it is not easy to computationally identify the most relevant set of tweets related to any specific event. Challenging semantics coupled with different ways for using natural language in social media make it difficult for retrieving the most relevant set of data from any social media outlet. This paper seeks to demonstrate a way to present the changing semantics of Twitter within the context of a crisis event, specifically tweets during Hurricane Irma. These methods can be used to identify the most relevant corpus of text for analysis in relevance to a specific incident such as a hurricane. Using an implementation of the Word2Vec method of Neural Network training mechanisms to create Word Embeddings, this paper will: discuss how the relative meaning of words changes as events unfold; present a mechanism for scoring tweets based upon dynamic, relative context relatedness; and show that similarity between words is not necessarily static. We present different methods for training the vector model in Word2Vec for identification of the most relevant tweets for any search query. The impact of tuning parameters such as Word Window Size, Minimum Word Frequency, Hidden Layer Dimensionality, and Negative Sampling on model performance was explored. The window containing the local maximum for AU_ROC for each parameter serves as a guide for other studies using the methods presented here for social media data analysis.

摘要

利用社交媒体内容进行自然语言处理应用的兴趣与日俱增。然而,通过计算来识别与任何特定事件相关的最相关推文集合并非易事。社交媒体中具有挑战性的语义以及使用自然语言的不同方式,使得从任何社交媒体平台检索最相关的数据集合变得困难。本文旨在展示一种在危机事件背景下呈现推特语义变化的方法,特别是飓风“厄玛”期间的推文。这些方法可用于识别与特定事件(如飓风)相关的最相关文本语料库以进行分析。本文将使用神经网络训练机制的Word2Vec方法的实现来创建词嵌入,讨论随着事件展开单词的相对含义如何变化;提出一种基于动态、相对上下文相关性对推文进行评分的机制;并表明单词之间的相似性不一定是静态的。我们提出了在Word2Vec中训练向量模型的不同方法,以识别针对任何搜索查询的最相关推文。探讨了诸如词窗口大小、最小词频、隐藏层维度和负采样等调优参数对模型性能的影响。每个参数的包含AU_ROC局部最大值的窗口,可为使用本文提出的方法进行社交媒体数据分析的其他研究提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/084f/10368660/3be3a8b5ca26/41598_2023_38761_Fig1_HTML.jpg

相似文献

1
A deep semantic matching approach for identifying relevant messages for social media analysis.
Sci Rep. 2023 Jul 25;13(1):12005. doi: 10.1038/s41598-023-38761-y.
4
Epidemiology from Tweets: Estimating Misuse of Prescription Opioids in the USA from Social Media.
J Med Toxicol. 2017 Dec;13(4):278-286. doi: 10.1007/s13181-017-0625-5. Epub 2017 Aug 22.
6
Detecting Novel and Emerging Drug Terms Using Natural Language Processing: A Social Media Corpus Study.
JMIR Public Health Surveill. 2018 Jan 8;4(1):e2. doi: 10.2196/publichealth.7726.

引用本文的文献

1
Discovering opioid slang on social media: A Word2Vec approach with reddit data.
Drug Alcohol Depend Rep. 2024 Nov 19;13:100302. doi: 10.1016/j.dadr.2024.100302. eCollection 2024 Dec.
2
Streamlining social media information retrieval for public health research with deep learning.
J Am Med Inform Assoc. 2024 Jun 20;31(7):1569-1577. doi: 10.1093/jamia/ocae118.

本文引用的文献

1
Evolution of word meanings through metaphorical mapping: Systematicity over the past millennium.
Cogn Psychol. 2017 Aug;96:41-53. doi: 10.1016/j.cogpsych.2017.05.005. Epub 2017 Jun 8.
2
The Canary in the Coal Mine Tweets: Social Media Reveals Public Perceptions of Non-Medical Use of Opioids.
PLoS One. 2015 Aug 7;10(8):e0135072. doi: 10.1371/journal.pone.0135072. eCollection 2015.
4
Integrating social media into emergency-preparedness efforts.
N Engl J Med. 2011 Jul 28;365(4):289-91. doi: 10.1056/NEJMp1103591.
5
Measures of semantic similarity and relatedness in the biomedical domain.
J Biomed Inform. 2007 Jun;40(3):288-99. doi: 10.1016/j.jbi.2006.06.004. Epub 2006 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验