Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
Institute for Drug Evaluation, Peking University Health Science Center, Beijing, 100191, China.
Ann Hematol. 2023 Oct;102(10):2765-2777. doi: 10.1007/s00277-023-05371-7. Epub 2023 Jul 25.
Bruton's tyrosine kinase inhibitor (BTKi) has revolutionized the treatment of B-cell lymphomas. However, BTKi-related hematological toxicity hinders treatment continuity and may further affect clinical efficacy. To identify risk factors and predict the likelihood of BTKi-related hematological toxicities, we constructed and validated a prediction model for severe hematological toxicity of BTKi. Approved by the hospital medical science research ethics committee (No. M2022427), we collected real-world data in patients treated with BTKi from a Lymphoma Research Center in China. The outcome of interest was severe hematological toxicity caused by BTKi. 36 candidate variables were categorized into demographics, diagnostic and treatment information, laboratory data, and medical history. The study sample was randomly divided into training (70%) and validation (30%) sets. We developed and compared the performance of various modelling methods, including decision tree (DT), random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and logistic regression (LR). Finally, we constructed a Web-calculator of the optimal model to estimate the risk of hematological toxicity. This study was designed, conducted and reported strictly in compliance with the TRIPOD checklist. Data from a total 121 patients were included [median age, 65 years (range, 56-73 years); 74 (61.15%) men; 47 (38.84%) severe hematological toxicity]. The XGBoost model demonstrated better overall properties than other models, achieving high discrimination (AUC: 0.671; accuracy: 0.730; specificity: 0.913) and clinical benefit. The following 10 variables were used to develop the XGBoost model: white blood cell count (WBC), neutrophil count (Neut), red blood cell count (RBC), platelet count (PLT), fibrinogen (Fib), total protein (TP), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), gender and type of BTKi. SHAP values demonstrated insightful associations between these variables and hematological toxicity. Finally, to facilitate clinical and research use, we also deploy the XGBoost model on a web-calculator for free access. The XGBoost model with promising accuracy was developed to predict the severe hematological toxicity of BTKi. It helps to strengthen the proactive monitoring and management of patients with hematological toxicity, and thus achieve long-term continuous BTKi treatment.
布鲁顿酪氨酸激酶抑制剂(BTKi)改变了 B 细胞淋巴瘤的治疗方式。然而,BTKi 相关的血液学毒性会影响治疗的连续性,并可能进一步影响临床疗效。为了识别风险因素并预测 BTKi 相关血液学毒性的可能性,我们构建并验证了 BTKi 严重血液学毒性的预测模型。该研究得到了医院医学科学研究伦理委员会的批准(编号为 M2022427),我们收集了来自中国淋巴瘤研究中心接受 BTKi 治疗的患者的真实世界数据。主要研究结局为 BTKi 引起的严重血液学毒性。我们将 36 个候选变量分为人口统计学、诊断和治疗信息、实验室数据和病史。研究样本被随机分为训练集(70%)和验证集(30%)。我们开发并比较了不同建模方法的性能,包括决策树(DT)、随机森林(RF)、梯度提升决策树(GBDT)、极端梯度提升(XGBoost)、轻梯度提升机(LightGBM)和逻辑回归(LR)。最后,我们构建了一个基于最优模型的 Web 计算器,以估计血液学毒性的风险。该研究严格按照 TRIPOD 清单进行设计、实施和报告。共纳入 121 例患者的数据[中位年龄 65 岁(范围 56-73 岁);74 例(61.15%)男性;47 例(38.84%)发生严重血液学毒性]。XGBoost 模型的整体性能优于其他模型,具有较高的区分度(AUC:0.671;准确性:0.730;特异性:0.913)和临床获益。该模型使用了以下 10 个变量来开发:白细胞计数(WBC)、中性粒细胞计数(Neut)、红细胞计数(RBC)、血小板计数(PLT)、纤维蛋白原(Fib)、总蛋白(TP)、天门冬氨酸氨基转移酶(AST)、乳酸脱氢酶(LDH)、性别和 BTKi 类型。SHAP 值显示了这些变量与血液学毒性之间的关联。最后,为了便于临床和研究使用,我们还在一个免费的 Web 计算器上部署了 XGBoost 模型。该研究构建了一种具有较高准确性的 XGBoost 模型,用于预测 BTKi 严重血液学毒性。这有助于加强对血液学毒性患者的主动监测和管理,从而实现长期持续的 BTKi 治疗。