Suppr超能文献

基于锝-亚甲基二膦酸盐单光子发射计算机断层扫描/计算机断层扫描(Tc-MDP SPECT/CT)的影像组学-临床模型用于鉴别肿瘤患者的骨转移和良性骨病

Radiomics‑Clinical model based on Tc-MDP SPECT/CT for distinguishing between bone metastasis and benign bone disease in tumor patients.

作者信息

Wang Huili, Qiu Jianfeng, Xie Jindong, Lu Weizhao, Pan Yuteng, Ma Junchi, Jia Mingsheng

机构信息

College of Preventive Medicine & Institute of Radiation Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250012, China.

School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.

出版信息

J Cancer Res Clin Oncol. 2023 Nov;149(14):13353-13361. doi: 10.1007/s00432-023-05162-7. Epub 2023 Jul 25.

Abstract

BACKGROUND

To establish a radiomics-clinical model based on Tc-MDP SPECT/CT for distinguishing between bone metastasis and benign bone disease in tumor patients.

METHODS

We retrospectively analyzed 256 patients (122 with bone metastasis and 134 with benign bone disease) and randomized them in the ratio of 6:2:2 into training, test and validation sets. All patients underwent Tc-labeled methylene diphosphonate (Tc-MDP) SPECT/CT. We manually outlined the volumes of interest (VOIs) of lesions using ITK-SNAP from SPECT and CT images. In the training set, radiomics features were extracted using PyRadiomics and selected using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Then, we established three radiomics models (CT, SPECT and SPECT-CT models) using support vector machine (SVM). In addition, a radiomics-clinical model was constructed using multivariable logistic regression analysis. The four models' performance was assessed using the area under the receiver operating characteristic curve (AUC). Using DeLong test to make comparisons between the ROC (receiver operating characteristic) curves of different models. The clinical utility of the models was evaluated using decision curve analysis (DCA).

RESULTS

The radiomics-clinical displayed excellent performance, and its AUC was 0.941 and 0.879 in the training and test sets. The DCA of radiomics-clinical model showed the highest clinical utility.

CONCLUSIONS

The radiomics-clinical nomogram for identifying bone metastasis and benign bone disease in tumor patients was suitable to assist in clinical decision.

摘要

背景

建立基于锝-亚甲基二膦酸盐(Tc-MDP)单光子发射计算机断层显像/计算机断层扫描(SPECT/CT)的影像组学-临床模型,用于鉴别肿瘤患者的骨转移和良性骨病。

方法

我们回顾性分析了256例患者(122例骨转移患者和134例良性骨病患者),并按6:2:2的比例将他们随机分为训练集、测试集和验证集。所有患者均接受了锝标记的亚甲基二膦酸盐(Tc-MDP)SPECT/CT检查。我们使用ITK-SNAP从SPECT和CT图像中手动勾勒出病变的感兴趣区(VOIs)。在训练集中,使用PyRadiomics提取影像组学特征,并使用最小绝对收缩和选择算子(LASSO)回归进行选择。然后,我们使用支持向量机(SVM)建立了三个影像组学模型(CT、SPECT和SPECT-CT模型)。此外,使用多变量逻辑回归分析构建了影像组学-临床模型。使用受试者操作特征曲线(ROC)下面积(AUC)评估这四个模型的性能。使用DeLong检验对不同模型的ROC曲线进行比较。使用决策曲线分析(DCA)评估模型的临床实用性。

结果

影像组学-临床模型表现优异,其在训练集和测试集中的AUC分别为0.941和0.879。影像组学-临床模型的DCA显示出最高的临床实用性。

结论

用于识别肿瘤患者骨转移和良性骨病的影像组学-临床列线图适用于辅助临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验