文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

姜黄素纳米颗粒:物理化学制备、表征、抗氧化、酶抑制、分子对接及模拟研究

Curcumin nanoparticles: physicochemical fabrication, characterization, antioxidant, enzyme inhibition, molecular docking and simulation studies.

作者信息

Kanwal Qudsia, Ahmed Mahmood, Hamza Muhammad, Ahmad Muhammad, Yousaf Numan, Javaid Arshad, Anwar Aneela, Khan Iqra Haider, Muddassar Muhammad

机构信息

Department of Chemistry, The University of Lahore Lahore Pakistan

Department of Chemistry, Division of Science and Technology, University of Education, College Road Lahore Pakistan

出版信息

RSC Adv. 2023 Jul 24;13(32):22268-22280. doi: 10.1039/d3ra01432k. eCollection 2023 Jul 19.


DOI:10.1039/d3ra01432k
PMID:37492507
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10363772/
Abstract

Curcumin is an extensively studied natural compound due to its extensive biological applications. However, there are some drawbacks linked to this compound such as poor absorption, low water-solubility, quick systemic elimination, fast metabolism, poor pharmacokinetics, low bioavailability, low penetration targeting efficacy and low stability. To overcome these drawbacks, curcumin is encapsulated in nano-carriers. In the current studies, we synthesized nanoparticles of curcumin without using nanocarriers by different methods such as nano-suspension (Cur-NSM), sonication (Cur-SM) and anti-solvent precipitation (Cur-ASP) to enhance the solubility of curcumin in water. The prepared nanoparticles were characterized by FTIR, SEM and XRD analysis. These curcumin nanoparticles were screened for their solubilities in water, DPPH scavenging, amylase, α-glucosidase and β-glucosidase enzymatic activities. The particle size of nano-curcumin was found to be in the 47.4-98.7 nm range. The reduction in particle size of curcumin dramatically increases its solubility in water to 79.2 μg mL, whereas the solubility of curcumin is just 0.98 μg mL. Cur-ASP showed the highest free radical scavenging potential (48.84 ± 0.98%) which was comparable with standard BHT (50.48 ± 1.11%) at 75.0 μg mL. As well, Cur-ASP showed the highest inhibition of α-amylase (68.67 ± 1.02%), α-glucosidase (58.30 ± 0.52%), and β-glucosidase (64.80 ± 0.43%) at 100 μg mL which is comparable with standard drug acarbose. The greater surface area of nanoparticles exposes the various groups of curcumin for blocking the binding sites of enzymes. This strategy may be helpful in designing curcumin as a potent therapeutic agent against diabetes mellitus. Further, the molecular interactions of curcumin with α-amylase, α-glucosidase, β-glucosidase, and polyphenol oxidase were assessed by analyzing the plausible binding modes of curcumin in the binding pocket of each receptor. The best binding mode of curcumin was used to make complexes with the target proteins and their stability was confirmed by 50 ns MD simulation.

摘要

姜黄素是一种因具有广泛生物学应用而被广泛研究的天然化合物。然而,这种化合物存在一些缺点,如吸收差、水溶性低、全身快速清除、代谢快、药代动力学不佳、生物利用度低、靶向穿透效果差以及稳定性低。为克服这些缺点,姜黄素被封装在纳米载体中。在当前研究中,我们通过不同方法,如纳米悬浮法(Cur - NSM)、超声法(Cur - SM)和反溶剂沉淀法(Cur - ASP),在不使用纳米载体的情况下合成了姜黄素纳米颗粒,以提高姜黄素在水中的溶解度。通过傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和X射线衍射(XRD)分析对制备的纳米颗粒进行了表征。对这些姜黄素纳米颗粒进行了在水中的溶解度、二苯基苦味酰基自由基(DPPH)清除能力、淀粉酶、α - 葡萄糖苷酶和β - 葡萄糖苷酶活性的筛选。发现纳米姜黄素的粒径在47.4 - 98.7纳米范围内。姜黄素粒径的减小显著提高了其在水中的溶解度至79.2μg/mL,而姜黄素的溶解度仅为0.98μg/mL。在75.0μg/mL时,Cur - ASP表现出最高的自由基清除潜力(48.84±0.98%),与标准丁基羟基甲苯(BHT,50.48±1.11%)相当。同样,在100μg/mL时,Cur - ASP对α - 淀粉酶(68.67±1.02%)、α - 葡萄糖苷酶(58.30±0.52%)和β - 葡萄糖苷酶(64.80±0.43%)的抑制作用最强,与标准药物阿卡波糖相当。纳米颗粒更大的表面积使姜黄素的各种基团暴露出来,从而阻断酶的结合位点。这种策略可能有助于将姜黄素设计成一种有效的抗糖尿病治疗剂。此外,通过分析姜黄素在每个受体结合口袋中的合理结合模式,评估了姜黄素与α - 淀粉酶、α - 葡萄糖苷酶、β - 葡萄糖苷酶和多酚氧化酶的分子相互作用。使用姜黄素的最佳结合模式与靶蛋白形成复合物,并通过50纳秒的分子动力学(MD)模拟确认了它们的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/34c789a68527/d3ra01432k-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/19f1e74efe80/d3ra01432k-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/ba31811d5fcf/d3ra01432k-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/3bc3fb307414/d3ra01432k-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/bbbb7f58a6ca/d3ra01432k-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/2b9898ad98b0/d3ra01432k-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/7eab9a80105d/d3ra01432k-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/1baeaffecb5b/d3ra01432k-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/ceed3c1e7673/d3ra01432k-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/76e5b157edcf/d3ra01432k-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/34c789a68527/d3ra01432k-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/19f1e74efe80/d3ra01432k-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/ba31811d5fcf/d3ra01432k-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/3bc3fb307414/d3ra01432k-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/bbbb7f58a6ca/d3ra01432k-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/2b9898ad98b0/d3ra01432k-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/7eab9a80105d/d3ra01432k-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/1baeaffecb5b/d3ra01432k-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/ceed3c1e7673/d3ra01432k-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/76e5b157edcf/d3ra01432k-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0077/10363772/34c789a68527/d3ra01432k-f10.jpg

相似文献

[1]
Curcumin nanoparticles: physicochemical fabrication, characterization, antioxidant, enzyme inhibition, molecular docking and simulation studies.

RSC Adv. 2023-7-24

[2]
Fabrication, Evaluation, and Antioxidant Properties of Carrier-Free Curcumin Nanoparticles.

Molecules. 2023-1-29

[3]
Fabrication of pea protein-curcumin nanocomplexes via microfluidization for improved solubility, nano-dispersibility and heat stability of curcumin: Insight on interaction mechanisms.

Int J Biol Macromol. 2021-1-31

[4]
Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles.

Int J Nanomedicine. 2012-7-27

[5]
One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: physicochemical stability, redispersibility, solubility and bioaccessibility.

Food Funct. 2021-7-5

[6]
Synthesis of Curcumin Nanoparticles from Raw Turmeric Rhizome.

ACS Omega. 2021-3-18

[7]
Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities.

J Agric Food Chem. 2010-6-23

[8]
Development of curcumin-loaded gemini surfactant nanoparticles: Synthesis, characterization and evaluation of anticancer activity against human breast cancer cell lines.

Phytomedicine. 2018-11-15

[9]
Antioxidant, antibacterial and anti-cancer activities of β-and γ-CDs/curcumin loaded in chitosan nanoparticles.

Int J Biol Macromol. 2020-1-23

[10]
Inhibition of α-glucosidase activity by curcumin loaded on ZnO@rGO nanocarrier for potential treatment of diabetes mellitus.

Luminescence. 2024-1

引用本文的文献

[1]
Co-Formulation of Iron Oxide and PLGA Nanoparticles to Deliver Curcumin and IFNα for Synergistic Anticancer Activity in A375 Melanoma Skin Cancer Cells.

Pharmaceutics. 2025-6-30

[2]
Pharmacological effects, molecular mechanisms and strategies to improve bioavailability of curcumin in the treatment of neurodegenerative diseases.

Front Pharmacol. 2025-7-10

[3]
Investigation of Multifunctionality of Electrospun Poly(vinyl alcohol) Nanofiber Membranes Incorporating Boric Acid and Nanoencapsulated Curcumin: Filtration Performance, Antibacterial Activity, and Environmental Impact.

ACS Omega. 2025-6-10

[4]
Molecular Mechanisms Behind Organ-Related Aging and Regulatory Effects of Natural Therapeutics.

Cell Biochem Biophys. 2025-6-17

[5]
Pharmacological effects, formulations, and clinical research progress of curcumin.

Front Pharmacol. 2025-3-17

[6]
Nanostructured Strategies for Melanoma Treatment-Part I: Design and Optimization of Curcumin-Loaded Micelles for Enhanced Anticancer Activity.

Pharmaceuticals (Basel). 2025-2-26

[7]
Harnessing curcumin and nanotechnology for enhanced treatment of breast cancer bone metastasis.

Discov Nano. 2024-11-11

[8]
Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors.

Front Chem. 2024-5-20

[9]
Natural and Synthetic Anticancer Epidrugs Targeting the Epigenetic Integrator UHRF1.

Molecules. 2023-8-10

本文引用的文献

[1]
Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges.

Eur J Med Chem. 2023-3-5

[2]
Design, synthesis, spectroscopic characterizations, antidiabetic, in silico and kinetic evaluation of novel curcumin-fused aldohexoses.

Spectrochim Acta A Mol Biomol Spectrosc. 2023-1-15

[3]
Design and synthesis of novel benzimidazole-iminosugars linked a substituted phenyl group and their inhibitory activities against β-glucosidase.

Bioorg Chem. 2022-10

[4]
Identification of raloxifene as a novel α-glucosidase inhibitor using a systematic drug repurposing approach in combination with cross molecular docking-based virtual screening and experimental verification.

Carbohydr Res. 2022-1

[5]
Synthesis of Curcumin Nanoparticles from Raw Turmeric Rhizome.

ACS Omega. 2021-3-18

[6]
Antioxidant Effects of Eugenol on Oxidative Stress Induced by Hydrogen Peroxide in Islets of Langerhans Isolated from Male Mouse.

Int J Hepatol. 2020-12-30

[7]
Enhancing Bioavailability and Stability of Curcumin Using Solid Lipid Nanoparticles (CLEN): A Covenant for Its Effectiveness.

Front Bioeng Biotechnol. 2020-10-15

[8]
Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials.

Antioxidants (Basel). 2020-11-6

[9]
Curcumin nanoparticles have potential antioxidant effect and restore tetrahydrobiopterin levels in experimental diabetes.

Biomed Pharmacother. 2020-11

[10]
Scalable molecular dynamics on CPU and GPU architectures with NAMD.

J Chem Phys. 2020-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索