文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge.

作者信息

Li Yunxiang, Li Zihan, Zhang Kai, Dan Ruilong, Jiang Steve, Zhang You

机构信息

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, USA.

Department of Computer Science, University of Illinois at Urbana-Champaign, Illinois, USA.

出版信息

Cureus. 2023 Jun 24;15(6):e40895. doi: 10.7759/cureus.40895. eCollection 2023 Jun.


DOI:10.7759/cureus.40895
PMID:37492832
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10364849/
Abstract

Objective The primary aim of this research was to address the limitations observed in the medical knowledge of prevalent large language models (LLMs) such as ChatGPT, by creating a specialized language model with enhanced accuracy in medical advice. Methods We achieved this by adapting and refining the large language model meta-AI (LLaMA) using a large dataset of 100,000 patient-doctor dialogues sourced from a widely used online medical consultation platform. These conversations were cleaned and anonymized to respect privacy concerns. In addition to the model refinement, we incorporated a self-directed information retrieval mechanism, allowing the model to access and utilize real-time information from online sources like Wikipedia and data from curated offline medical databases. Results The fine-tuning of the model with real-world patient-doctor interactions significantly improved the model's ability to understand patient needs and provide informed advice. By equipping the model with self-directed information retrieval from reliable online and offline sources, we observed substantial improvements in the accuracy of its responses. Conclusion Our proposed ChatDoctor, represents a significant advancement in medical LLMs, demonstrating a significant improvement in understanding patient inquiries and providing accurate advice. Given the high stakes and low error tolerance in the medical field, such enhancements in providing accurate and reliable information are not only beneficial but essential.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/e10814fb8c20/cureus-0015-00000040895-i13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/255cfc8b9502/cureus-0015-00000040895-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/450ff619c871/cureus-0015-00000040895-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/25475de36d3e/cureus-0015-00000040895-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/742dfd536a27/cureus-0015-00000040895-i04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/a942b1e27ddb/cureus-0015-00000040895-i05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/9872eca8423f/cureus-0015-00000040895-i06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/2b4446ecf28e/cureus-0015-00000040895-i07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/f54e7484d1b3/cureus-0015-00000040895-i08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/dd215b8ec325/cureus-0015-00000040895-i09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/607134dc49d8/cureus-0015-00000040895-i10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/9b070d39aac7/cureus-0015-00000040895-i11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/18d97cfbe005/cureus-0015-00000040895-i12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/e10814fb8c20/cureus-0015-00000040895-i13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/255cfc8b9502/cureus-0015-00000040895-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/450ff619c871/cureus-0015-00000040895-i02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/25475de36d3e/cureus-0015-00000040895-i03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/742dfd536a27/cureus-0015-00000040895-i04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/a942b1e27ddb/cureus-0015-00000040895-i05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/9872eca8423f/cureus-0015-00000040895-i06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/2b4446ecf28e/cureus-0015-00000040895-i07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/f54e7484d1b3/cureus-0015-00000040895-i08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/dd215b8ec325/cureus-0015-00000040895-i09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/607134dc49d8/cureus-0015-00000040895-i10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/9b070d39aac7/cureus-0015-00000040895-i11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/18d97cfbe005/cureus-0015-00000040895-i12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6012/10364849/e10814fb8c20/cureus-0015-00000040895-i13.jpg

相似文献

[1]
ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge.

Cureus. 2023-6-24

[2]
EYE-Llama, an in-domain large language model for ophthalmology.

bioRxiv. 2024-4-29

[3]
Large Language Models for Therapy Recommendations Across 3 Clinical Specialties: Comparative Study.

J Med Internet Res. 2023-10-30

[4]
A Reliable and Accessible Caregiving Language Model (CaLM) to Support Tools for Caregivers: Development and Evaluation Study.

JMIR Form Res. 2024-7-31

[5]
Evaluation of Large language model performance on the Multi-Specialty Recruitment Assessment (MSRA) exam.

Comput Biol Med. 2024-1

[6]
Me-LLaMA: Foundation Large Language Models for Medical Applications.

Res Sq. 2024-5-22

[7]
Distilling large language models for matching patients to clinical trials.

J Am Med Inform Assoc. 2024-9-1

[8]
PMC-LLaMA: toward building open-source language models for medicine.

J Am Med Inform Assoc. 2024-9-1

[9]
Evaluating Large Language Models in Extracting Cognitive Exam Dates and Scores.

medRxiv. 2024-2-13

[10]
BioInstruct: instruction tuning of large language models for biomedical natural language processing.

J Am Med Inform Assoc. 2024-9-1

引用本文的文献

[1]
A Pipeline for Automating Emergency Medicine Documentation Using LLMs with Retrieval-Augmented Text Generation.

Appl Artif Intell. 2025-6-18

[2]
Evaluation of large language models as a diagnostic tool for medical learners and clinicians using advanced prompting techniques.

PLoS One. 2025-8-1

[3]
EYE-Llama, an in-domain large language model for ophthalmology.

iScience. 2025-6-23

[4]
Accuracy of ChatGPT-3.5, ChatGPT-4o, Copilot, Gemini, Claude, and Perplexity in advising on lumbosacral radicular pain against clinical practice guidelines: cross-sectional study.

Front Digit Health. 2025-6-27

[5]
Conversational health agents: a personalized large language model-powered agent framework.

JAMIA Open. 2025-7-6

[6]
Large models in medical imaging: Advances and prospects.

Chin Med J (Engl). 2025-7-20

[7]
Large Language Model Architectures in Health Care: Scoping Review of Research Perspectives.

J Med Internet Res. 2025-6-19

[8]
Knowledge Graph-Enhanced Deep Learning Model (H-SYSTEM) for Hypertensive Intracerebral Hemorrhage: Model Development and Validation.

J Med Internet Res. 2025-6-12

[9]
BioMistral-NLU: Towards More Generalizable Medical Language Understanding through Instruction Tuning.

AMIA Jt Summits Transl Sci Proc. 2025-6-10

[10]
Retrieval augmented generation for large language models in healthcare: A systematic review.

PLOS Digit Health. 2025-6-11

本文引用的文献

[1]
Artificial intelligence hallucinations.

Crit Care. 2023-5-10

[2]
Artificial hallucination: GPT on LSD?

Crit Care. 2023-4-18

[3]
ChatGPT: Is this version good for healthcare and research?

Diabetes Metab Syndr. 2023-4

[4]
Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine.

N Engl J Med. 2023-3-30

[5]
How Does ChatGPT Perform on the United States Medical Licensing Examination (USMLE)? The Implications of Large Language Models for Medical Education and Knowledge Assessment.

JMIR Med Educ. 2023-2-8

[6]
Mpox in Children and Adolescents: Epidemiology, Clinical Features, Diagnosis, and Management.

Pediatrics. 2023-2-1

[7]
Monkeypox.

N Engl J Med. 2022-11-10

[8]
Limits of trust in medical AI.

J Med Ethics. 2020-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索