对话式健康智能体:一个由个性化大语言模型驱动的智能体框架。
Conversational health agents: a personalized large language model-powered agent framework.
作者信息
Abbasian Mahyar, Azimi Iman, Rahmani Amir M, Jain Ramesh
机构信息
Department of Computer Science, University of California Irvine, Irvine, CA 92697-2625, United States.
School of Nursing, University of California Irvine, Irvine, CA 92697-3959, United States.
出版信息
JAMIA Open. 2025 Jul 6;8(4):ooaf067. doi: 10.1093/jamiaopen/ooaf067. eCollection 2025 Aug.
OBJECTIVE
Conversational Health Agents (CHAs) are interactive systems providing healthcare services, such as assistance and diagnosis. Current CHAs, especially those utilizing Large Language Models (LLMs), primarily focus on conversation aspects. However, they offer limited agent capabilities, specifically needing more multistep problem-solving, personalized conversations, and multimodal data analysis. We aim to overcome these limitations.
MATERIALS AND METHODS
We propose openCHA, an open-source LLM-powered framework, designed to enable the development of conversational agents. OpenCHA offers a foundational and structured architecture and codebase, enabling researchers and developers to build and customize their CHA based on the specifics of their intended application. The framework leverages knowledge acquisition, problem-solving capabilities, multilingual, and multimodal conversations, and allows interaction with various AI platforms. We have released the framework as open source for the community on GitHub (https://github.com/Institute4FutureHealth/CHA and https://opencha.com).
RESULTS
We demonstrated the openCHA's capability to develop CHAs across multiple health domains using 2 demos and 5 use cases. In diabetic patient management, developed CHA achieved a 92.1% accuracy rate, surpassing GPT4's 51.8%. In food recommendations, developed CHA outperformed GPT4. The developed CHA excelled as an evaluator for mental health chatbots, recording the lowest Mean Absolute Error at 0.31, compared to competitors like GPT, Misteral, Gemini, and Claude. Additionally, the empathy enabled CHA identified emotional states with 89% accuracy, and in physiological data analysis of heart rate from Photoplethysmography (PPG) signals, the developed CHA achieved an mean absolute error of 2.83, far lower than GPT-4o's 8.93.
DISCUSSION
The openCHA framework enhances CHAs by enabling features such as explainability, personalization, and reliability through its integration with LLMs and external data sources. The developed CHAs face challenges like latency, token limits, and scalability. Future efforts will focus on improving planning robustness, enhancing accuracy and evaluation methods, and resolving user query ambiguity to further refine the framework's effectiveness.
CONCLUSION
The diverse demos and use cases of openCHA demonstrate the framework's capacity to empower the development of a wide range of CHAs for various healthcare tasks.
目的
对话式健康智能体(CHAs)是提供医疗保健服务(如协助和诊断)的交互式系统。当前的CHAs,尤其是那些利用大语言模型(LLMs)的,主要侧重于对话方面。然而,它们提供的智能体功能有限,特别需要更多的多步骤问题解决、个性化对话和多模态数据分析。我们旨在克服这些限制。
材料与方法
我们提出了openCHA,一个由LLM驱动的开源框架,旨在实现对话式智能体的开发。OpenCHA提供了一个基础且结构化的架构和代码库,使研究人员和开发人员能够根据其预期应用的具体情况构建和定制他们的CHAs。该框架利用知识获取、问题解决能力、多语言和多模态对话,并允许与各种人工智能平台进行交互。我们已将该框架作为开源项目在GitHub(https://github.com/Institute4FutureHealth/CHA和https://opencha.com)上发布给社区。
结果
我们通过2个演示和5个用例展示了openCHA在多个健康领域开发CHAs的能力。在糖尿病患者管理中,开发的CHAs准确率达到92.1%,超过了GPT4的51.8%。在食物推荐方面,开发的CHAs表现优于GPT4。开发的CHAs作为心理健康聊天机器人的评估工具表现出色,与GPT、Misteral、Gemini和Claude等竞争对手相比,平均绝对误差最低,为0.31。此外,具有同理心的CHAs识别情绪状态的准确率为89%,在基于光电容积脉搏波描记法(PPG)信号进行心率的生理数据分析中,开发的CHAs平均绝对误差为2.83,远低于GPT - 4o的8.93。
讨论
openCHA框架通过与LLMs和外部数据源集成,实现了可解释性、个性化和可靠性等功能,从而增强了CHAs。开发的CHAs面临延迟、令牌限制和可扩展性等挑战。未来的工作将集中在提高规划稳健性、增强准确性和评估方法,以及解决用户查询的模糊性,以进一步提高框架的有效性。
结论
openCHA的各种演示和用例展示了该框架为各种医疗保健任务开发广泛的CHAs的能力。