文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种使用带有检索增强文本生成功能的大语言模型来自动化急诊医学文档记录的流程。

A Pipeline for Automating Emergency Medicine Documentation Using LLMs with Retrieval-Augmented Text Generation.

作者信息

Moser Denis, Bender Matthias, Sariyar Murat

机构信息

Department Medical Informatics, Bern University of Applied Sciences, Biel/Bienne, Switzerland.

出版信息

Appl Artif Intell. 2025 Jun 18;39(1):2519169. doi: 10.1080/08839514.2025.2519169. eCollection 2025.


DOI:10.1080/08839514.2025.2519169
PMID:40755813
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12315831/
Abstract

Accurate and efficient documentation of patient information is vital in emergency healthcare settings. Traditional manual documentation methods are often time-consuming and prone to errors, potentially affecting patient outcomes. Large Language Models (LLMs) offer a promising solution to enhance medical communication systems; however, their clinical deployment, particularly in non-English languages such as German, presents challenges related to content accuracy, clinical relevance, and data privacy. This study addresses these challenges by developing and evaluating an automated pipeline for emergency medical documentation in German. The research objectives include (1) generating synthetic dialogues with known ground truth data to create controlled datasets for evaluating NLP performance and (2) designing an innovative pipeline to retrieve essential clinical information from these dialogues. A subset of 100 anonymized patient records from the MIMIC-IV-ED dataset was selected, ensuring diversity in demographics, chief complaints, and conditions. A Retrieval-Augmented Generation (RAG) system extracted key nominal and numerical features using chunking, embedding, and dynamic prompts. Evaluation metrics included precision, recall, F1-score, and sentiment analysis. Initial results demonstrated high extraction accuracy, particularly in medication data (F1-scores: 86.21%-100%), though performance declined in nuanced clinical language, requiring further refinement for real-world emergency settings.

摘要

在紧急医疗环境中,准确高效地记录患者信息至关重要。传统的手动记录方法往往耗时且容易出错,可能会影响患者的治疗结果。大语言模型(LLMs)为增强医疗通信系统提供了一个有前景的解决方案;然而,它们在临床中的应用,尤其是在德语等非英语语言环境中,在内容准确性、临床相关性和数据隐私方面存在挑战。本研究通过开发和评估一个用于德语紧急医疗记录的自动化流程来应对这些挑战。研究目标包括:(1)使用已知的真实数据生成合成对话,以创建用于评估自然语言处理(NLP)性能的受控数据集;(2)设计一个创新的流程,从这些对话中检索基本的临床信息。从MIMIC-IV-ED数据集中选取了100份匿名患者记录的子集,确保在人口统计学、主要症状和病情方面具有多样性。一个检索增强生成(RAG)系统使用分块、嵌入和动态提示来提取关键的名词和数字特征。评估指标包括精确率、召回率、F1分数和情感分析。初步结果显示出较高的提取准确性,尤其是在用药数据方面(F1分数:86.21%-100%),不过在细微的临床语言方面性能有所下降,需要进一步优化以适用于现实世界的紧急情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/170f5b95e6bb/UAAI_A_2519169_F0008_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/982266436558/UAAI_A_2519169_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/a878e50bd4e3/UAAI_A_2519169_F0002_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/1cd837a364b1/UAAI_A_2519169_F0003_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/53e1e83a5f0a/UAAI_A_2519169_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/7330ca11d2f5/UAAI_A_2519169_F0005_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/855339bc9d39/UAAI_A_2519169_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/7fb336c53923/UAAI_A_2519169_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/170f5b95e6bb/UAAI_A_2519169_F0008_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/982266436558/UAAI_A_2519169_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/a878e50bd4e3/UAAI_A_2519169_F0002_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/1cd837a364b1/UAAI_A_2519169_F0003_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/53e1e83a5f0a/UAAI_A_2519169_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/7330ca11d2f5/UAAI_A_2519169_F0005_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/855339bc9d39/UAAI_A_2519169_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/7fb336c53923/UAAI_A_2519169_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/12315831/170f5b95e6bb/UAAI_A_2519169_F0008_B.jpg

相似文献

[1]
A Pipeline for Automating Emergency Medicine Documentation Using LLMs with Retrieval-Augmented Text Generation.

Appl Artif Intell. 2025-6-18

[2]
Assessing Retrieval-Augmented Large Language Model Performance in Emergency Department ICD-10-CM Coding Compared to Human Coders.

medRxiv. 2024-10-17

[3]
Can open source large language models be used for tumor documentation in Germany?-An evaluation on urological doctors' notes.

BioData Min. 2025-7-24

[4]
From text to data: Open-source large language models in extracting cancer related medical attributes from German pathology reports.

Int J Med Inform. 2025-11

[5]
Enhancing Pulmonary Disease Prediction Using Large Language Models With Feature Summarization and Hybrid Retrieval-Augmented Generation: Multicenter Methodological Study Based on Radiology Report.

J Med Internet Res. 2025-6-11

[6]
Large Language Model Symptom Identification From Clinical Text: Multicenter Study.

J Med Internet Res. 2025-7-31

[7]
Predicting 30-Day Postoperative Mortality and American Society of Anesthesiologists Physical Status Using Retrieval-Augmented Large Language Models: Development and Validation Study.

J Med Internet Res. 2025-6-3

[8]
Using Generative Artificial Intelligence in Health Economics and Outcomes Research: A Primer on Techniques and Breakthroughs.

Pharmacoecon Open. 2025-4-29

[9]
A dataset and benchmark for hospital course summarization with adapted large language models.

J Am Med Inform Assoc. 2025-3-1

[10]
A large language model based pipeline for extracting information from patient complaint and anamnesis in clinical notes for severity assessment.

Sci Rep. 2025-7-14

本文引用的文献

[1]
Retrieval augmented generation for 10 large language models and its generalizability in assessing medical fitness.

NPJ Digit Med. 2025-4-5

[2]
Viability of Open Large Language Models for Clinical Documentation in German Health Care: Real-World Model Evaluation Study.

JMIR Med Inform. 2024-8-28

[3]
Optimizing Data Extraction: Harnessing RAG and LLMs for German Medical Documents.

Stud Health Technol Inform. 2024-8-22

[4]
Applying generative AI with retrieval augmented generation to summarize and extract key clinical information from electronic health records.

J Biomed Inform. 2024-8

[5]
ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge.

Cureus. 2023-6-24

[6]
Automatic documentation of professional health interactions: A systematic review.

Artif Intell Med. 2023-3

[7]
Complete and Resilient Documentation for Operational Medical Environments Leveraging Mobile Hands-free Technology in a Systems Approach: Experimental Study.

JMIR Mhealth Uhealth. 2021-10-12

[8]
A patient-centered digital scribe for automatic medical documentation.

JAMIA Open. 2021-2-17

[9]
Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction.

NPJ Digit Med. 2021-5-20

[10]
Feasibility Assessment of a Pre-Hospital Automated Sensing Clinical Documentation System.

AMIA Annu Symp Proc. 2020-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索