Suppr超能文献

一个多糖利用基因座同时靶向真菌细胞壁中的几丁质和β-葡聚糖。

A polysaccharide utilization locus from simultaneously targets chitin and β-glucans found in fungal cell walls.

机构信息

Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology , Stockholm, Sweden.

College of Medicine and Public Health, Flinders University , Adelaide, Australia.

出版信息

mSphere. 2023 Aug 24;8(4):e0024423. doi: 10.1128/msphere.00244-23. Epub 2023 Jul 26.

Abstract

In nature, complex carbohydrates are rarely found as pure isolated polysaccharides. Instead, bacteria in competitive environments are presented with glycans embedded in heterogeneous matrices such as plant or microbial cell walls. Members of the Bacteroidota phylum thrive in such ecosystems because they are efficient at extracting nutrients from complex substrates, secreting consortia of synergistic enzymes to release metabolizable sugars. Carbohydrate-binding modules (CBMs) are used to target enzymes to substrates, enhancing reaction rate and product release. Additionally, genome organizational tools like polysaccharide utilization loci (PULs) ensure that the appropriate set of enzymes is produced when needed. In this study, we show that the soil bacterium uses a PUL and several CBMs to coordinate the activities of enzymes targeting two distinct polysaccharides found in fungal cell walls. We describe the enzymatic activities and carbohydrate-binding behaviors of components of the fungal cell wall utilization locus (FCWUL), which uses multiple chitinases and one β-1,3-glucanase to hydrolyze two different substrates. Unusually, one of the chitinases is appended to a β-glucan-binding CBM, implying targeting to a bulk cell wall substrate rather than to the specific polysaccharide being hydrolyzed. Based on our characterization of the PUL's outer membrane sensor protein, we suggest that the FCWUL is activated by β-1,3-glucans, even though most of its enzymes are chitin-degrading. Our data showcase the complexity of polysaccharide deconstruction in nature and highlight an elegant solution for how multiple different glycans can be accessed using one enzymatic cascade. IMPORTANCE We report that the genome of the soil bacterium encodes three multi-modular carbohydrate-active enzymes that work together to hydrolyze the major polysaccharide components found in fungal cell walls (FCWs). The enzymes are all encoded by one polysaccharide utilization locus and are co-expressed, potentially induced in the presence of β-1,3-glucans. We present biochemical characterization of each enzyme, including the appended carbohydrate-binding modules that likely tether the enzymes to a FCW substrate. Finally, we propose a model for how this so-called fungal cell wall utilization locus might enable to metabolize both chitin and β-1,3-glucans found in complex biomass in the soil.

摘要

在自然界中,复杂的碳水化合物很少以纯游离多糖的形式存在。相反,在竞争环境中的细菌会遇到嵌入到植物或微生物细胞壁等不均匀基质中的糖。拟杆菌门的成员在这样的生态系统中茁壮成长,因为它们能够从复杂的基质中有效地提取营养物质,分泌协同作用的酶来释放可代谢的糖。碳水化合物结合模块 (CBM) 用于将酶靶向到底物上,从而提高反应速率和产物释放。此外,像多糖利用基因座 (PUL) 这样的基因组组织工具可确保在需要时产生适当的酶。在这项研究中,我们表明土壤细菌 使用一个 PUL 和几个 CBM 来协调针对真菌细胞壁中两种不同多糖的酶的活性。我们描述了真菌细胞壁利用基因座 (FCWUL) 的酶的酶促活性和碳水化合物结合行为,该基因座使用多种几丁质酶和一种β-1,3-葡聚糖酶来水解两种不同的底物。不同寻常的是,一种几丁质酶连接到一个β-葡聚糖结合 CBM 上,这意味着靶向的是大量细胞壁基质,而不是正在水解的特定多糖。基于我们对 PUL 的外膜传感器蛋白的特性分析,我们推测 FCWUL 是由β-1,3-葡聚糖激活的,尽管其大多数酶是几丁质降解酶。我们的数据展示了自然界中多糖解构的复杂性,并强调了一种用于使用单一酶级联来访问多种不同聚糖的优雅解决方案。 重要性 我们报告说,土壤细菌 的基因组编码三个多模块碳水化合物活性酶,它们共同作用水解真菌细胞壁(FCW)中发现的主要多糖成分。这些酶均由一个多糖利用基因座编码,并且共表达,可能在存在β-1,3-葡聚糖时被诱导。我们对每种酶进行了生化特性分析,包括可能将酶固定在 FCW 底物上的附加碳水化合物结合模块。最后,我们提出了一个模型,说明这个所谓的真菌细胞壁利用基因座如何使 能够代谢土壤中复杂生物质中的几丁质和β-1,3-葡聚糖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bd/10449523/95e5107d210a/msphere.00244-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验