Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
mBio. 2020 Apr 7;11(2):e00095-20. doi: 10.1128/mBio.00095-20.
The human gut microbiota (HGM) has far-reaching impacts on human health and nutrition, which are fueled primarily by the metabolism of otherwise indigestible complex carbohydrates commonly known as dietary fiber. However, the molecular basis of the ability of individual taxa of the HGM to address specific dietary glycan structures remains largely unclear. In particular, the utilization of β(1,3)-glucans, which are widespread in the human diet as yeast, seaweed, and plant cell walls, had not previously been resolved. Through a systems-based approach, here we show that the symbiont deploys a single, exemplar polysaccharide utilization locus (PUL) to access yeast β(1,3)-glucan, brown seaweed β(1,3)-glucan (laminarin), and cereal mixed-linkage β(1,3)/β(1,4)-glucan. Combined biochemical, enzymatic, and structural analysis of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) illuminates a concerted molecular system by which recognizes and saccharifies these distinct β-glucans. Strikingly, the functional characterization of homologous β(1,3)-glucan utilization loci (1,3GUL) in other further demonstrated that the ability of individual taxa to utilize β(1,3)-glucan variants and/or β(1,3)/β(1,4)-glucans arises combinatorially from the individual specificities of SGBPs and GHs at the cell surface, which feed corresponding signals to periplasmic hybrid two-component sensors (HTCSs) via TonB-dependent transporters (TBDTs). These data reveal the importance of cooperativity in the adaptive evolution of GH and SGBP cohorts to address individual polysaccharide structures. We anticipate that this fine-grained knowledge of PUL function will inform metabolic network analysis and proactive manipulation of the HGM. Indeed, a survey of 2,441 public human metagenomes revealed the international, yet individual-specific, distribution of each 1,3GUL. are a dominant phylum of the human gut microbiota (HGM) that target otherwise indigestible dietary fiber with an arsenal of polysaccharide utilization loci (PULs), each of which is dedicated to the utilization of a specific complex carbohydrate. Here, we provide novel insight into this paradigm through functional characterization of homologous PULs from three autochthonous species, which target the family of dietary β(1,3)-glucans. Through detailed biochemical and protein structural analysis, we observed an unexpected diversity in the substrate specificity of PUL glycosidases and glycan-binding proteins with regard to β(1,3)-glucan linkage and branching patterns. In combination, these individual enzyme and protein specificities support taxon-specific growth on individual β(1,3)-glucans. This detailed metabolic insight, together with a comprehensive survey of individual 1,3GULs across human populations, further expands the fundamental roadmap of the HGM, with potential application to the future development of microbial intervention therapies.
人类肠道微生物群(HGM)对人类健康和营养有着深远的影响,主要是通过对通常不可消化的复杂碳水化合物(通常称为膳食纤维)的代谢来实现的。然而,HGM 中个体分类群能够解决特定膳食糖结构的分子基础在很大程度上仍不清楚。特别是β(1,3)-葡聚糖的利用,β(1,3)-葡聚糖广泛存在于人类饮食中,如酵母、海藻和植物细胞壁中,以前尚未得到解决。通过基于系统的方法,我们在这里表明,共生体利用单个典范多糖利用基因座(PUL)来访问酵母β(1,3)-葡聚糖、褐藻β(1,3)-葡聚糖(岩藻聚糖)和谷物混合链接β(1,3)/β(1,4)-葡聚糖。对 PUL 编码糖苷水解酶(GHs)和表面聚糖结合蛋白(SGBPs)进行的综合生化、酶学和结构分析,阐明了一种协同的分子系统,通过该系统,识别和糖化这些不同的β-葡聚糖。引人注目的是,在其他共生体中同源β(1,3)-葡聚糖利用基因座(1,3GUL)的功能特征进一步表明,个体分类群利用β(1,3)-葡聚糖变体和/或β(1,3)/β(1,4)-葡聚糖的能力是由细胞表面上 SGBPs 和 GHs 的个体特异性组合产生的,这些特异性通过 TonB 依赖性转运体(TBDTs)将相应的信号传递给周质杂交双组分传感器(HTCSs)。这些数据揭示了 GH 和 SGBP 群体在适应进化中协同作用的重要性,以解决个体多糖结构。我们预计,对 PUL 功能的这种细粒度的了解将为代谢网络分析和 HGM 的主动操纵提供信息。事实上,对 2441 个人类宏基因组的调查揭示了每个 1,3GUL 在国际上但个体特异性的分布。是人类肠道微生物群(HGM)的主要门,它们利用一系列多糖利用基因座(PULs)靶向其他不可消化的膳食纤维,每个 PUL 都专门用于利用特定的复杂碳水化合物。在这里,我们通过对来自三个同源共生体的同源 PUL 的功能表征提供了对这一范例的新见解,这些共生体靶向膳食β(1,3)-葡聚糖家族。通过详细的生化和蛋白质结构分析,我们观察到 PUL 糖苷酶和聚糖结合蛋白在β(1,3)-葡聚糖键合和分支模式方面的底物特异性存在意想不到的多样性。组合使用这些个体酶和蛋白质特异性可以支持特定分类群在单个β(1,3)-葡聚糖上的特异性生长。这种详细的代谢见解,加上对人类种群中个体 1,3GUL 的全面调查,进一步扩展了 HGM 的基本路线图,具有应用于未来微生物干预治疗的潜力。