Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalonia 08907, Spain.
Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA.
Sci Transl Med. 2023 Jul 26;15(706):eadd1014. doi: 10.1126/scitranslmed.add1014.
Optogenetics is a widely used technology with potential for translational research. A critical component of such applications is the ability to track the location of the transduced opsin in vivo. To address this problem, we engineered an excitatory opsin, ChRERα (hChR2(134R)-V5-ERα-LBD), that could be visualized using positron emission tomography (PET) imaging in a noninvasive, longitudinal, and quantitative manner. ChRERα consists of the prototypical excitatory opsin channelrhodopsin-2 (ChR2) and the ligand-binding domain (LBD) of the human estrogen receptor α (ERα). ChRERα showed conserved ChR2 functionality and high affinity for [F]16α-fluoroestradiol (FES), an FDA-approved PET radiopharmaceutical. Experiments in rats demonstrated that adeno-associated virus (AAV)-mediated expression of ChRERα enables neural circuit manipulation in vivo and that ChRERα expression could be monitored using FES-PET imaging. In vivo experiments in nonhuman primates (NHPs) confirmed that ChRERα expression could be monitored at the site of AAV injection in the primary motor cortex and in long-range neuronal terminals for up to 80 weeks. The anatomical connectivity map of the primary motor cortex identified by FES-PET imaging of ChRERα expression overlapped with a functional connectivity map identified using resting state fMRI in a separate cohort of NHPs. Overall, our results demonstrate that ChRERα expression can be mapped longitudinally in the mammalian brain using FES-PET imaging and can be used for neural circuit modulation in vivo.
光遗传学是一种广泛应用的技术,具有转化研究的潜力。这种应用的一个关键组成部分是能够在体内跟踪转导的光敏感蛋白的位置。为了解决这个问题,我们设计了一种兴奋性光敏感蛋白 ChRERα(hChR2(134R)-V5-ERα-LBD),它可以通过正电子发射断层扫描(PET)成像以非侵入性、纵向和定量的方式进行可视化。ChRERα 由原型兴奋性光敏感蛋白通道视紫红质-2(ChR2)和人雌激素受体 α(ERα)的配体结合域(LBD)组成。ChRERα 表现出保守的 ChR2 功能和对 [F]16α-氟雌二醇(FES)的高亲和力,FES 是一种美国食品和药物管理局批准的 PET 放射性药物。在大鼠中的实验表明,腺相关病毒(AAV)介导的 ChRERα 表达能够实现体内神经回路的操作,并且可以使用 FES-PET 成像来监测 ChRERα 的表达。在非人类灵长类动物(NHPs)中的体内实验证实,ChRERα 的表达可以在 AAV 注射到初级运动皮层的部位以及长达 80 周的长程神经元末端进行监测。通过 ChRERα 表达的 FES-PET 成像识别的初级运动皮层的解剖连接图与在另一组 NHPs 中使用静息状态 fMRI 识别的功能连接图重叠。总的来说,我们的结果表明,ChRERα 的表达可以使用 FES-PET 成像在哺乳动物大脑中进行纵向映射,并可用于体内神经回路的调制。