Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA.
Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
Nat Commun. 2023 Jul 26;14(1):4502. doi: 10.1038/s41467-023-40218-9.
Interest in spatial omics is on the rise, but generation of highly multiplexed images remains challenging, due to cost, expertise, methodical constraints, and access to technology. An alternative approach is to register collections of whole slide images (WSI), generating spatially aligned datasets. WSI registration is a two-part problem, the first being the alignment itself and the second the application of transformations to huge multi-gigapixel images. To address both challenges, we developed Virtual Alignment of pathoLogy Image Series (VALIS), software which enables generation of highly multiplexed images by aligning any number of brightfield and/or immunofluorescent WSI, the results of which can be saved in the ome.tiff format. Benchmarking using publicly available datasets indicates VALIS provides state-of-the-art accuracy in WSI registration and 3D reconstruction. Leveraging existing open-source software tools, VALIS is written in Python, providing a free, fast, scalable, robust, and easy-to-use pipeline for registering multi-gigapixel WSI, facilitating downstream spatial analyses.
空间组学的研究兴趣日益浓厚,但由于成本、专业知识、方法学限制以及获取技术的限制,高度多重化的图像生成仍然具有挑战性。另一种方法是注册全玻片图像 (WSI) 集,生成空间对齐的数据集。WSI 注册是一个两部分的问题,第一部分是对齐本身,第二部分是对数十亿像素的大型图像应用变换。为了解决这两个挑战,我们开发了虚拟病理学图像系列对齐软件 (VALIS),该软件通过对齐任意数量的明场和/或免疫荧光 WSI 来生成高度多重化的图像,其结果可以以 ome.tiff 格式保存。使用公开数据集进行基准测试表明,VALIS 在 WSI 注册和 3D 重建方面具有最先进的准确性。利用现有的开源软件工具,VALIS 是用 Python 编写的,为注册数十亿像素的 WSI 提供了一个免费、快速、可扩展、稳健且易于使用的流水线,为下游的空间分析提供了便利。