Suppr超能文献

利用社交接触图分区的传染病自适应分组检测策略。

Adaptive group testing strategy for infectious diseases using social contact graph partitions.

机构信息

Department of Computer Science, Virginia Tech, Blacksburg, VA, 24060, USA.

出版信息

Sci Rep. 2023 Jul 26;13(1):12102. doi: 10.1038/s41598-023-39326-9.

Abstract

Mass testing is essential for identifying infected individuals during an epidemic and allowing healthy individuals to return to normal social activities. However, testing capacity is often insufficient to meet global health needs, especially during newly emerging epidemics. Dorfman's method, a classic group testing technique, helps reduce the number of tests required by pooling the samples of multiple individuals into a single sample for analysis. Dorfman's method does not consider the time dynamics or limits on testing capacity involved in infection detection, and it assumes that individuals are infected independently, ignoring community correlations. To address these limitations, we present an adaptive group testing (AGT) strategy based on graph partitioning, which divides a physical contact network into subgraphs (groups of individuals) and assigns testing priorities based on the social contact characteristics of each subgraph. Our AGT aims to maximize the number of infected individuals detected and minimize the number of tests required. After each testing round (perhaps on a daily basis), the testing priority is increased for each neighboring group of known infected individuals. We also present an enhanced infectious disease transmission model that simulates the dynamic spread of a pathogen and evaluate our AGT strategy using the simulation results. When applied to 13 social contact networks, AGT demonstrates significant performance improvements compared to Dorfman's method and its variations. Our AGT strategy requires fewer tests overall, reduces disease spread, and retains robustness under changes in group size, testing capacity, and other parameters. Testing plays a crucial role in containing and mitigating pandemics by identifying infected individuals and helping to prevent further transmission in families and communities. By identifying infected individuals and helping to prevent further transmission in families and communities, our AGT strategy can have significant implications for public health, providing guidance for policymakers trying to balance economic activity with the need to manage the spread of infection.

摘要

大规模检测对于在疫情期间识别感染个体并使健康个体恢复正常社会活动至关重要。然而,检测能力往往不足以满足全球卫生需求,尤其是在新出现的疫情期间。多夫曼方法是一种经典的分组检测技术,通过将多个个体的样本合并为一个样本进行分析,有助于减少所需的检测次数。然而,多夫曼方法没有考虑到感染检测中涉及的时间动态或检测能力的限制,并且假设个体是独立感染的,忽略了社区相关性。为了解决这些限制,我们提出了一种基于图划分的自适应分组检测(AGT)策略,该策略将物理接触网络划分为子图(个体组),并根据每个子图的社会接触特征分配检测优先级。我们的 AGT 旨在最大限度地检测到感染个体的数量,并最小化所需的检测次数。在每次检测轮次(可能每天一次)之后,都会增加已知感染个体的每个相邻组的检测优先级。我们还提出了一种增强的传染病传播模型,用于模拟病原体的动态传播,并使用模拟结果评估我们的 AGT 策略。当应用于 13 个社会接触网络时,AGT 与多夫曼方法及其变体相比,显示出显著的性能提升。我们的 AGT 策略总体上需要更少的检测次数,减少了疾病的传播,并且在组大小、检测能力和其他参数变化时保持稳健性。检测在识别感染个体并帮助防止家庭和社区内进一步传播方面发挥着至关重要的作用,可以控制和减轻大流行。通过识别感染个体并帮助防止家庭和社区内的进一步传播,我们的 AGT 策略对公共卫生具有重要意义,为试图平衡经济活动与管理感染传播需求的政策制定者提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de73/10372051/7639371d038f/41598_2023_39326_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验