School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
J Exp Biol. 2023 Aug 15;226(16). doi: 10.1242/jeb.245926. Epub 2023 Aug 22.
Oxygen is essential for most eukaryotic lifeforms, as it supports mitochondrial oxidative phosphorylation to supply ∼90% of cellular adenosine triphosphate (ATP). Fluctuations in O2 present a major stressor, with hypoxia leading to a cascade of detrimental physiological changes that alter cell operations and ultimately induce death. Nonetheless, some species episodically tolerate near-anoxic environments, and have evolved mechanisms to sustain function even during extended hypoxic periods. While mitochondria are pivotal in central metabolism, their role in hypoxia tolerance remains ill defined. Given the vulnerability of the brain to hypoxia, mitochondrial function was tested in brain homogenates of three closely related triplefin species with varying degrees of hypoxia tolerance (Bellapiscis medius, Forsterygion lapillum and Forsterygion varium). High-resolution respirometry coupled with fluorometric measurements of mitochondrial membrane potential (mtMP) permitted assessment of differences in mitochondrial function and integrity in response to intermittent hypoxia and anoxia. Traditional steady-state measures of respiratory flux and mtMP showed no differences among species. However, in the transition into anoxia, the tolerant species B. medius and F. lapillum maintained mtMP at O2 pressures 7- and 4.4-fold lower, respectively, than that of the hypoxia-sensitive F. varium and exhibited slower rates of membrane depolarisation. The results indicate that dynamic oxic-hypoxic mitochondria transitions underlie hypoxia tolerance in these intertidal fish.
氧气是大多数真核生命形式所必需的,因为它支持线粒体氧化磷酸化,为细胞提供约 90%的三磷酸腺苷 (ATP)。氧气的波动是一个主要的应激源,缺氧会导致一系列有害的生理变化,改变细胞的运作,最终导致死亡。然而,有些物种会间歇性地耐受近缺氧环境,并进化出了在延长的缺氧期维持功能的机制。虽然线粒体在中心代谢中起着关键作用,但它们在缺氧耐受中的作用仍未得到明确界定。考虑到大脑对缺氧的脆弱性,对三种亲缘关系密切的三鳍鱼的脑匀浆中的线粒体功能进行了测试,这三种三鳍鱼具有不同程度的缺氧耐受能力(中三鳍鱼、拉皮鱼和斑鳍三鳍鱼)。高分辨率呼吸测量法结合线粒体膜电位 (mtMP) 的荧光测量法,可评估线粒体功能和完整性对间歇性缺氧和缺氧的反应差异。传统的呼吸流量稳态测量和 mtMP 测量显示,物种之间没有差异。然而,在进入缺氧状态时,耐受物种 B. medius 和 F. lapillum 分别将 mtMP 维持在比缺氧敏感的 F. varium 低 7 倍和 4.4 倍的氧分压下,并且表现出较慢的膜去极化速率。结果表明,这些潮间带鱼类的耐缺氧能力是由动态的好氧-缺氧线粒体转变所决定的。