Suppr超能文献

解析闰盘超微结构和分子组织的室特异性差异对心脏传导的影响。

Unraveling Impacts of Chamber-Specific Differences in Intercalated Disc Ultrastructure and Molecular Organization on Cardiac Conduction.

机构信息

Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.

The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.

出版信息

JACC Clin Electrophysiol. 2023 Dec;9(12):2425-2443. doi: 10.1016/j.jacep.2023.05.042. Epub 2023 Jul 26.

Abstract

BACKGROUND

Propagation of action potentials through the heart coordinates the heartbeat. Thus, intercalated discs, specialized cell-cell contact sites that provide electrical and mechanical coupling between cardiomyocytes, are an important target for study. Impaired propagation leads to arrhythmias in many pathologies, where intercalated disc remodeling is a common finding, hence the importance and urgency of understanding propagation dependence on intercalated disc structure. Conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, because of lack of quantitative structural data at subcellular through nano scales.

OBJECTIVES

This study sought to quantify intercalated disc structure at these spatial scales in the healthy adult mouse heart and relate them to chamber-specific properties of propagation as a precursor to understanding the effects of pathological intercalated disc remodeling.

METHODS

Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization.

RESULTS

By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by interchamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction.

CONCLUSIONS

These data provide the first stepping stone to elucidating chamber-specific effects of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.

摘要

背景

动作电位在心脏中的传播协调了心跳。因此,闰盘是细胞间的特殊接触部位,为心肌细胞之间提供了电和机械耦合,是研究的重要目标。在许多病理情况下,动作电位的传播受损会导致心律失常,其中闰盘重构是一种常见的发现,因此了解闰盘结构对传播的依赖性的重要性和紧迫性。由于缺乏亚细胞到纳米尺度的定量结构数据,传统的建模方法无法预测改变闰盘超微结构或分子组织的扰动所引起的传播变化。

目的

本研究旨在定量分析健康成年小鼠心脏中闰盘在这些空间尺度上的结构,并将其与传播的腔室特异性特性相关联,作为理解病理性闰盘重构影响的前奏。

方法

使用超分辨率荧光显微镜、电子显微镜和计算图像分析,我们首次系统地、多尺度地量化了闰盘的超微结构和分子组织。

结果

通过将这些数据纳入具有真实闰盘结构的心脏组织的基于规则的模型中,并将电传播的模型预测与传导速度的实验测量进行比较,我们揭示了心房闰盘能够支持比心室闰盘更快的传导,而这通常被心肌细胞几何形状的腔室差异所掩盖。此外,我们确定了支持心房闰盘更快传导的关键超微结构和分子组织特征。

结论

这些数据为阐明病理性闰盘重构的腔室特异性影响提供了第一个基石,因为这种影响发生在许多心律失常疾病中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验