Suppr超能文献

通过表达分析定位玉米叶片衰老突变体的基因并了解衰老途径。

Mapping the gene of a maize leaf senescence mutant and understanding the senescence pathways by expression analysis.

机构信息

State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.

出版信息

Plant Cell Rep. 2023 Oct;42(10):1651-1663. doi: 10.1007/s00299-023-03051-4. Epub 2023 Jul 27.

Abstract

Narrowing down to a single putative target gene behind a leaf senescence mutant and constructing the regulation network by proteomic method. Leaf senescence mutant is an important resource for exploring molecular mechanism of aging. To dig for potential modulation networks during maize leaf aging process, we delimited the gene responsible for a premature leaf senescence mutant els5 to a 1.1 Mb interval in the B73 reference genome using a BCF population with 40,000 plants, and analyzed the leaf proteomics of the mutant and its near-isogenic wild type line. A total of 1355 differentially accumulated proteins (DAP) were mainly enriched in regulation pathways such as "photosynthesis", "ribosome", and "porphyrin and chlorophyll metabolism" by the KEGG pathway analysis. The interaction networks constructed by incorporation of transcriptome data showed that ZmELS5 likely repaired several key factors in the photosynthesis system. The putative candidate proteins for els5 were proposed based on DAPs in the fined QTL mapping interval. These results provide fundamental basis for cloning and functional research of the els5 gene, and new insights into the molecular mechanism of leaf senescence in maize.

摘要

缩小到一个潜在的目标基因背后的叶片衰老突变体,并通过蛋白质组学方法构建调控网络。叶片衰老突变体是探索衰老分子机制的重要资源。为了挖掘玉米叶片衰老过程中的潜在调控网络,我们利用一个包含 4 万个植株的 BCF 群体,将负责早衰叶片突变体 els5 的基因限定在 B73 参考基因组的 1.1Mb 区间内,并分析了突变体及其近等基因野生型系的叶片蛋白质组学。通过 KEGG 途径分析,共鉴定到 1355 个差异积累蛋白(DAP),主要富集在“光合作用”、“核糖体”和“卟啉和叶绿素代谢”等调控途径中。通过整合转录组数据构建的互作网络表明,ZmELS5 可能修复了光合作用系统中的几个关键因子。根据精细 QTL 定位区间中的 DAPs,提出了 els5 的候选蛋白。这些结果为 els5 基因的克隆和功能研究提供了基础,并为玉米叶片衰老的分子机制提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验