State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
Chem Soc Rev. 2023 Aug 29;52(17):5968-6002. doi: 10.1039/d2cs00519k.
Biomolecular electronics is a rapidly growing multidisciplinary field that combines biology, nanoscience, and engineering to bridge the two important fields of life sciences and molecular electronics. Proteins are remarkable for their ability to recognize molecules and transport electrons, making the integration of proteins into electronic devices a long sought-after goal and leading to the emergence of the field of protein-based bioelectronics, also known as proteotronics. This field seeks to design and create new biomolecular electronic platforms that allow for the understanding and manipulation of protein-mediated electronic charge transport and related functional applications. In recent decades, there have been numerous reports on protein-based bioelectronics using a variety of nano-gapped electrical devices and techniques at the single molecular level, which are not achievable with conventional ensemble approaches. This review focuses on recent advances in physical electron transport mechanisms, device fabrication methodologies, and various applications in protein-based bioelectronics. We discuss the most recent progress of the single or few protein-bridged electrical junction fabrication strategies, summarise the work on fundamental and functional applications of protein bioelectronics that enable high and dynamic electron transport, and highlight future perspectives and challenges that still need to be addressed. We believe that this specific review will stimulate the interdisciplinary research of topics related to protein-related bioelectronics, and open up new possibilities for single-molecule biophysics and biomedicine.
生物分子电子学是一个快速发展的多学科领域,它结合了生物学、纳米科学和工程学,旨在弥合生命科学和分子电子学这两个重要领域之间的差距。蛋白质以其识别分子和传输电子的能力而著称,将蛋白质整合到电子设备中是一个长期以来的目标,这导致了基于蛋白质的生物电子学领域的出现,也被称为蛋白质电子学。该领域旨在设计和创建新的生物分子电子平台,以允许理解和操纵蛋白质介导的电子电荷传输和相关的功能应用。在过去的几十年中,已经有许多关于基于蛋白质的生物电子学的报告,使用各种纳米间隙电设备和技术在单个分子水平上,这是传统的集合方法无法实现的。本综述重点介绍了物理电子输运机制、器件制造方法以及基于蛋白质的生物电子学中的各种应用的最新进展。我们讨论了单分子或少数蛋白质桥接电连接的制造策略的最新进展,总结了关于蛋白质生物电子学的基础和功能应用的工作,这些应用能够实现高动态电子输运,并强调了未来仍需解决的观点和挑战。我们相信,这种特定的综述将激发与蛋白质相关的生物电子学相关主题的跨学科研究,并为单分子生物物理学和生物医学开辟新的可能性。