Garg Kavita, Futera Zdenek, Wu Xiaojing, Jeong Yongchan, Chiu Rachel, Pisharam Varun Chittari, Ha Tracy Q, Aragonès Albert C, van Wonderen Jessica H, Butt Julea N, Blumberger Jochen, Díez-Pérez Ismael
Department of Chemistry, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, Britannia House 7 Trinity Street London SE1 1DB UK
Faculty of Science, University of South Bohemia Branisovska 1760 370 05 Ceske Budejovice Czech Republic.
Chem Sci. 2024 Jul 3;15(31):12326-12335. doi: 10.1039/d4sc01366b. eCollection 2024 Aug 7.
Multiheme cytochromes (MHCs) are the building blocks of highly conductive micrometre-long supramolecular wires found in so-called electrical bacteria. Recent studies have revealed that these proteins possess a long supramolecular array of closely packed cofactors along the main molecular axis alternating between perpendicular and stacking configurations (TST = T-shaped, stacked, T-shaped). While TST arrays have been identified as the likely electron conduit, the mechanisms of outstanding long-range charge transport observed in these structures remain unknown. Here we study charge transport on individual small tetraheme cytochromes (STCs) containing a single TST array. Individual STCs are trapped in a controllable nanoscale tunnelling gap. By modulating the tunnelling gap separation, we are able to selectively probe four different electron pathways involving 1, 2, 3 and 4 cofactors, respectively, leading to the determination of the electron tunnelling decay constant along the TST motif. Conductance calculations of selected single-STC junctions are in excellent agreement with experiments and suggest a mechanism of electron tunnelling with shallow length decay constant through an individual STC. These results demonstrate that an individual TST motif supporting electron tunnelling might contribute to a tunnelling-assisted charge transport diffusion mechanism in larger TST associations.
多血红素细胞色素(MHCs)是在所谓的电细菌中发现的高导电性微米长超分子导线的组成部分。最近的研究表明,这些蛋白质沿着主分子轴拥有紧密堆积的辅因子的长超分子阵列,这些辅因子在垂直和堆积构型(TST = T形、堆积、T形)之间交替。虽然TST阵列已被确定为可能的电子传导途径,但在这些结构中观察到的出色的长程电荷传输机制仍然未知。在这里,我们研究了含有单个TST阵列的单个小四血红素细胞色素(STCs)上的电荷传输。单个STC被困在可控的纳米级隧穿间隙中。通过调节隧穿间隙间距,我们能够分别选择性地探测涉及1、2、3和4个辅因子的四种不同电子途径,从而确定沿TST基序的电子隧穿衰减常数。所选单STC结的电导计算与实验结果非常吻合,并提出了一种通过单个STC具有浅长度衰减常数的电子隧穿机制。这些结果表明,支持电子隧穿的单个TST基序可能有助于在更大的TST组合中形成隧穿辅助的电荷传输扩散机制。