Suppr超能文献

单体酶中的电导通道。

Conductance Channels in a Single-Entity Enzyme.

机构信息

1 São Carlos Institute of Chemistry, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil.

出版信息

J Phys Chem Lett. 2024 Oct 31;15(43):10795-10801. doi: 10.1021/acs.jpclett.4c01796. Epub 2024 Oct 21.

Abstract

For a long time, the prevailing view in the scientific community was that proteins, being complex macromolecules composed of amino acid chains linked by peptide bonds, adopt folded structure with insulating or semiconducting properties, with high bandgaps. However, recent discoveries of unexpectedly high conductance levels, reaching values in the range of dozens of nanosiemens (nS) in proteins, have challenged this conventional understanding. In this study, we used scanning tunneling microscopy (STM) to explore the single-entity conductance properties of enzymatic channels, focusing on bilirubin oxidase (BOD) as a model metalloprotein. By immobilizing BOD on a conductive carbon surface, we discern its preferred orientation, facilitating the formation of electronic and ionic channels. These channels show efficient electron transport (ETp), with apparent conductance up to the 15 nS range. Notably, these conductance pathways are localized, minimizing electron transport barriers due to solvents and ions, underscoring BOD's redox versatility. Furthermore, electron transfer (ET) within the BOD occurs via preferential pathways. The alignment of the conductance channels with hydrophilicity maps, molecular vacancies, and regions accessible to electrolytes explains the observed conductance values. Additionally, BOD exhibits redox activity, with its active center playing a critical role in the ETp process. These findings significantly advance our understanding of the intricate mechanisms that govern ETp processes in proteins, offering new insights into the conductance of metalloproteins.

摘要

长期以来,科学界的主流观点认为,蛋白质作为由氨基酸链通过肽键连接而成的复杂大分子,采用具有绝缘或半导体特性的折叠结构,具有较高的能带隙。然而,最近发现的蛋白质中出乎意料的高电导率水平,达到数十纳西门子(nS)范围内,挑战了这一传统观念。在这项研究中,我们使用扫描隧道显微镜(STM)来探索酶通道的单实体电导特性,重点研究胆红素氧化酶(BOD)作为一种模型金属蛋白。通过将 BOD 固定在导电碳表面上,我们可以辨别其优先取向,从而促进电子和离子通道的形成。这些通道表现出有效的电子传输(ETp),表观电导高达 15 nS 范围。值得注意的是,这些电导途径是局部的,由于溶剂和离子的存在,最小化了电子传输障碍,突出了 BOD 的氧化还原多功能性。此外,BOD 内部的电子转移(ET)通过优先途径发生。电导通道与亲水性图谱、分子空位以及可与电解质接触的区域的对齐解释了观察到的电导值。此外,BOD 表现出氧化还原活性,其活性中心在 ETp 过程中起着关键作用。这些发现极大地促进了我们对蛋白质中 ETp 过程复杂机制的理解,为金属蛋白的电导提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dc4/11533225/1e6f147dfc02/jz4c01796_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验