Suppr超能文献

基于深度学习模型的孕早期胎儿颈部透明带测量超声图像智能质量评估

Intelligent quality assessment of ultrasound images for fetal nuchal translucency measurement during the first trimester of pregnancy based on deep learning models.

作者信息

Liu Lu, Wang Ting, Zhu Wenjing, Zhang Haidong, Tian Hongyan, Li Yanping, Cai Wenjun, Yang Peng

机构信息

Department of Ultrasound Medicine, Medical School, South China Hospital, Shenzhen University, Shenzhen, P. R. China.

Medical Research Department, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, P. R. China.

出版信息

BMC Pregnancy Childbirth. 2025 Jul 10;25(1):741. doi: 10.1186/s12884-025-07863-y.

Abstract

OBJECTIVE

As increased nuchal translucency (NT) thickness is notably associated with fetal chromosomal abnormalities, structural defects, and genetic syndromes, accurate measurement of NT thickness is crucial for the screening of fetal abnormalities during the first trimester. We aimed to develop a model for quality assessment of ultrasound images for precise measurement of fetal NT thickness.

METHOD

We collected 2140 ultrasound images of midsagittal sections of the fetal face between 11 and 14 weeks of gestation. Several image segmentation models were trained, and the one exhibiting the highest DSC and HD 95 was chosen to automatically segment the ROI. The radiomics features and deep transfer learning (DTL) features were extracted and selected to construct radiomics and DTL models. Feature screening was conducted using the -test, Mann-Whitney -test, Spearman’s rank correlation analysis, and LASSO. We also developed early fusion and late fusion models to integrate the advantages of radiomics and DTL models. The optimal model was compared with junior radiologists. We used SHapley Additive exPlanations (SHAP) to investigate the model’s interpretability.

RESULTS

The DeepLabV3 ResNet achieved the best segmentation performance (DSC: 98.07 ± 0.02%, HD 95: 0.75 ± 0.15 mm). The feature fusion model demonstrated the optimal performance (AUC: 0.978, 95% CI: 0.965–0.990, accuracy: 93.2%, sensitivity: 93.1%, specificity: 93.4%, PPV: 93.5%, NPV: 93.0%, precision: 93.5%). This model exhibited more reliable performance compared to junior radiologists and significantly improved the capabilities of junior radiologists. The SHAP summary plot showed DTL features were the most important features for feature fusion model.

CONCLUSION

The proposed models innovatively bridge the gaps in previous studies, achieving intelligent quality assessment of ultrasound images for NT measurement and highly accurate automatic segmentation of ROIs. These models are potential tools to enhance quality control for fetal ultrasound examinations, streamline clinical workflows, and improve the professional skills of less-experienced radiologists.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1186/s12884-025-07863-y.

摘要

目的

由于颈项透明层(NT)厚度增加与胎儿染色体异常、结构缺陷和遗传综合征显著相关,准确测量NT厚度对于孕早期胎儿异常筛查至关重要。我们旨在开发一种用于超声图像质量评估的模型,以精确测量胎儿NT厚度。

方法

我们收集了2140张妊娠11至14周胎儿面部矢状中切面的超声图像。训练了多个图像分割模型,并选择DSC和HD 95最高的模型自动分割感兴趣区域(ROI)。提取并选择了放射组学特征和深度迁移学习(DTL)特征,以构建放射组学和DTL模型。使用t检验、曼-惠特尼U检验、斯皮尔曼等级相关分析和套索回归进行特征筛选。我们还开发了早期融合和晚期融合模型,以整合放射组学和DTL模型的优势。将最佳模型与初级放射科医生进行比较。我们使用SHapley加性解释(SHAP)来研究模型的可解释性。

结果

DeepLabV3 ResNet实现了最佳分割性能(DSC:98.07±0.02%,HD 95:0.75±0.15毫米)。特征融合模型表现出最佳性能(AUC:0.978,95%置信区间:0.965–0.990,准确率:93.2%,灵敏度:93.1%,特异度:93.4%,阳性预测值:93.5%,阴性预测值:93.0%,精确率:93.5%)。与初级放射科医生相比,该模型表现出更可靠的性能,并显著提高了初级放射科医生的能力。SHAP总结图显示DTL特征是特征融合模型最重要的特征。

结论

所提出的模型创新性地弥补了以往研究的不足,实现了用于NT测量的超声图像智能质量评估和ROI的高精度自动分割。这些模型是增强胎儿超声检查质量控制、简化临床工作流程以及提高经验不足的放射科医生专业技能的潜在工具。

补充信息

在线版本包含可在10.1186/s12884-025-07863-y获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7814/12243185/9abb54572695/12884_2025_7863_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验