Kleinman Michael, Wang Tian, Xiao Derek, Feghhi Ebrahim, Lee Kenji, Carr Nicole, Li Yuke, Hadidi Nima, Chandrasekaran Chandramouli, Kao Jonathan C
Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
Department of Biomedical Engineering, Boston University, Boston, MA, USA.
bioRxiv. 2025 Feb 15:2023.07.12.548742. doi: 10.1101/2023.07.12.548742.
Decision-making emerges from distributed computations across multiple brain areas, but it is unclear the brain distributes the computation. In deep learning, artificial neural networks use multiple areas (or layers) and form optimal representations of task inputs. These optimal representations are to perform the task well, but so they are invariant to other irrelevant variables. We recorded single neurons and multiunits in dorsolateral prefrontal cortex (DLPFC) and dorsal premotor cortex (PMd) in monkeys during a perceptual decision-making task. We found that while DLPFC represents task-related inputs required to compute the choice, the downstream PMd contains a minimal sufficient, or optimal, representation of the choice. To identify a mechanism for how cortex may form these optimal representations, we trained a multi-area recurrent neural network (RNN) to perform the task. Remarkably, DLPFC and PMd resembling representations emerged in the early and late areas of the multi-area RNN, respectively. The DLPFC-resembling area partially orthogonalized choice information and task inputs and this choice information was preferentially propagated to downstream areas through selective alignment with inter-area connections, while remaining task information was not. Our results suggest that cortex uses multi-area computation to form minimal sufficient representations by preferential propagation of relevant information between areas.
决策源于多个脑区的分布式计算,但尚不清楚大脑是如何进行这种计算分布的。在深度学习中,人工神经网络使用多个区域(或层)并形成任务输入的最优表示。这些最优表示对于良好地执行任务是必要的,但它们对于其他无关变量也是不变的。在一项感知决策任务中,我们记录了猴子背外侧前额叶皮层(DLPFC)和背侧运动前皮层(PMd)中的单个神经元和多单元活动。我们发现,虽然DLPFC表征了计算选择所需的与任务相关的输入,但下游的PMd包含了选择的最小充分或最优表示。为了确定皮层可能如何形成这些最优表示的机制,我们训练了一个多区域循环神经网络(RNN)来执行该任务。值得注意的是,在多区域RNN的早期和晚期区域分别出现了类似于DLPFC和PMd的表征。类似于DLPFC的区域部分地使选择信息和任务输入正交化,并且这种选择信息通过与区域间连接的选择性对齐而优先传播到下游区域,而其余的任务信息则不会。我们的结果表明,皮层通过区域间相关信息的优先传播,利用多区域计算来形成最小充分表示。