Isas J Mario, Langen Andreas, Isas Myles C, Pandey Nitin K, Siemer Ansgar B
Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California, United States.
Biochemistry. 2017 Jul 18;56(28):3579-3586. doi: 10.1021/acs.biochem.7b00138. Epub 2017 Jul 7.
The fact that the heritable neurodegenerative disorder Huntington's disease (HD) is autosomal dominant means that there is one wild type and one mutant allele in most HD patients. The CAG repeat expansion in the exon 1 of the protein huntingtin (HTT) that causes the disease leads to the formation of HTT fibrils in vitro and vivo. An important question for understanding the molecular mechanism of HD is which role wild type HTT plays for the formation, propagation, and structure of these HTT fibrils. Here we report that fibrils of mutant HTT are able to seed the aggregation of wild type HTT into amyloid fibrils, which in turn can seed the fibril formation of mutant HTT. Solid-state NMR and electron paramagnetic resonance data showed that wild type HTT fibrils closely resemble the structure of mutant fibrils, with small differences indicating a less extended fibril core. These data suggest that wild type fibrils can faithfully perpetuate the structure of mutant fibrils in HD. However, wild type HTT monomers have a much higher equilibrium solubility compared to mutant HTT, and only a small fraction incorporates into fibrils.
遗传性神经退行性疾病亨廷顿舞蹈症(HD)为常染色体显性遗传,这意味着大多数HD患者体内存在一个野生型等位基因和一个突变等位基因。导致该疾病的亨廷顿蛋白(HTT)第1外显子中的CAG重复序列扩展,在体外和体内均会导致HTT原纤维的形成。理解HD分子机制的一个重要问题是,野生型HTT在这些HTT原纤维的形成、传播和结构中扮演何种角色。在此我们报告,突变型HTT的原纤维能够引发野生型HTT聚集成淀粉样原纤维,而这些野生型HTT淀粉样原纤维又能引发突变型HTT的原纤维形成。固态核磁共振和电子顺磁共振数据表明,野生型HTT原纤维与突变型原纤维的结构非常相似,细微差异表明原纤维核心伸展程度较小。这些数据表明,在HD中野生型原纤维能够忠实地延续突变型原纤维的结构。然而,与突变型HTT相比,野生型HTT单体的平衡溶解度要高得多,只有一小部分会掺入原纤维中。