Otto Dominik, Jordan Cailin, Dury Brennan, Dien Christine, Setty Manu
Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA.
Computational Biology Program, Public Health Sciences Division, Seattle WA.
bioRxiv. 2023 Jul 11:2023.07.09.548272. doi: 10.1101/2023.07.09.548272.
Cell-state density characterizes the distribution of cells along phenotypic landscapes and is crucial for unraveling the mechanisms that drive cellular differentiation, regeneration, and disease. Here, we present Mellon, a novel computational algorithm for high-resolution estimation of cell-state densities from single-cell data. We demonstrate Mellon's efficacy by dissecting the density landscape of various differentiating systems, revealing a consistent pattern of high-density regions corresponding to major cell types intertwined with low-density, rare transitory states. Utilizing hematopoietic stem cell fate specification to B-cells as a case study, we present evidence implicating enhancer priming and the activation of master regulators in the emergence of these transitory states. Mellon offers the flexibility to perform temporal interpolation of time-series data, providing a detailed view of cell-state dynamics during the inherently continuous developmental processes. Scalable and adaptable, Mellon facilitates density estimation across various single-cell data modalities, scaling linearly with the number of cells. Our work underscores the importance of cell-state density in understanding the differentiation processes, and the potential of Mellon to provide new insights into the regulatory mechanisms guiding cellular fate decisions.
细胞状态密度表征细胞沿表型景观的分布,对于揭示驱动细胞分化、再生和疾病的机制至关重要。在此,我们介绍了Mellon,一种用于从单细胞数据中高分辨率估计细胞状态密度的新型计算算法。我们通过剖析各种分化系统的密度景观来证明Mellon的有效性,揭示了与主要细胞类型相对应的高密度区域与低密度、罕见过渡状态交织在一起的一致模式。以造血干细胞向B细胞的命运特化为案例研究,我们提供了证据表明增强子引发和主调节因子的激活与这些过渡状态的出现有关。Mellon提供了对时间序列数据进行时间插值的灵活性,提供了在固有连续发育过程中细胞状态动态的详细视图。Mellon具有可扩展性和适应性,便于跨各种单细胞数据模式进行密度估计,与细胞数量呈线性比例缩放。我们的工作强调了细胞状态密度在理解分化过程中的重要性,以及Mellon为指导细胞命运决定的调控机制提供新见解的潜力。