Suppr超能文献

活细胞中激酶活性的变构调节。

Allosteric regulation of kinase activity in living cells.

作者信息

Godbole Shivani, Dokholyan Nikolay V

机构信息

Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA.

Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA.

出版信息

bioRxiv. 2023 Oct 6:2023.07.19.549709. doi: 10.1101/2023.07.19.549709.

Abstract

The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or "sensors" are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.

摘要

由于蛋白激酶参与多种细胞信号通路,其失调与多种疾病相关。通过控制活性位点来操纵蛋白激酶功能,是减轻和研究疾病的一种有前景的治疗和研究策略。激酶活性位点具有结构相似性,使得难以特异性靶向一种激酶,变构控制允许在不直接靶向活性位点的情况下对激酶功能进行特异性调节和研究。变构位点远离活性位点,但通过蛋白质中残基间原子间相互作用的动态网络相连。对激酶建立变构控制需要了解蛋白质的变构连接。计算技术能有效且低成本地绘制蛋白质上的变构位点。在此,我们讨论绘制和调节蛋白质变构通讯的方法,以及在活细胞和生物体中建立对激酶功能控制的策略。蛋白质分子或“传感器”被设计成控制蛋白质变构活性的工具,因为这些传感器具有高时空分辨率,有助于在激酶立即激活或失活后了解细胞表型。用于研究蛋白质功能的传统方法,如敲除、敲低或突变,无法提供足够高的时空分辨率。随着我们进入解读细胞信号和开发治疗与信号失调相关疾病新方法的新时代,我们讨论调节蛋白激酶的现代工具库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/213a/10564464/73b7ad9e1e48/nihpp-2023.07.19.549709v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验