Suppr超能文献

利用机器学习辅助表型分析来表征大豆三个早期营养阶段的结瘤情况。

Using machine learning enabled phenotyping to characterize nodulation in three early vegetative stages in soybean.

作者信息

Carley Clayton N, Zubrod Melinda J, Dutta Somak, Singh Asheesh K

机构信息

Dep. of Agronomy Iowa State Univ. Ames IA USA.

Dep. of Statistics Iowa State Univ. Ames IA USA.

出版信息

Crop Sci. 2023 Jan-Feb;63(1):204-226. doi: 10.1002/csc2.20861. Epub 2022 Dec 27.

Abstract

The symbiotic relationship between soybean [ L. (Merr.)] roots and bacteria () lead to the development of nodules, important legume root structures where atmospheric nitrogen (N) is fixed into bio-available ammonia (NH) for plant growth and development. With the recent development of the Soybean Nodule Acquisition Pipeline (SNAP), nodules can more easily be quantified and evaluated for genetic diversity and growth patterns across unique soybean root system architectures. We explored six diverse soybean genotypes across three field year combinations in three early vegetative stages of development and report the unique relationships between soybean nodules in the taproot and non-taproot growth zones of diverse root system architectures of these genotypes. We found unique growth patterns in the nodules of taproots showing genotypic differences in how nodules grew in count, size, and total nodule area per genotype compared to non-taproot nodules. We propose that nodulation should be defined as a function of both nodule count and individual nodule area resulting in a total nodule area per root or growth regions of the root. We also report on the relationships between the nodules and total nitrogen in the seed at maturity, finding a strong correlation between the taproot nodules and final seed nitrogen at maturity. The applications of these findings could lead to an enhanced understanding of the plant- relationship and exploring these relationships could lead to leveraging greater nitrogen use efficiency and nodulation carbon to nitrogen production efficiency across the soybean germplasm.

摘要

大豆[L. (Merr.)]根系与细菌()之间的共生关系导致根瘤的形成,根瘤是豆科植物重要的根系结构,在其中大气中的氮(N)被固定为可供植物生长发育利用的氨(NH)。随着大豆根瘤采集管道(SNAP)的最新发展,可以更轻松地对根瘤进行量化,并评估其在独特大豆根系结构中的遗传多样性和生长模式。我们在三个早期营养发育阶段,对三个田间年份组合中的六种不同大豆基因型进行了研究,并报告了这些基因型不同根系结构的主根和非主根生长区中大豆根瘤之间的独特关系。我们发现主根根瘤具有独特的生长模式,与非主根根瘤相比,每个基因型的根瘤在数量、大小和总根瘤面积的生长方式上存在基因型差异。我们建议将结瘤定义为根瘤数量和单个根瘤面积的函数,从而得出每条根或根的生长区域的总根瘤面积。我们还报告了根瘤与成熟种子中总氮之间的关系,发现主根根瘤与成熟时种子最终含氮量之间存在很强的相关性。这些发现的应用可能会增进对植物关系的理解,探索这些关系可能会提高整个大豆种质的氮利用效率以及根瘤碳氮生产效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c453/10369931/1454fd1c77a4/CSC2-63-204-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验