Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.
Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.
Plant Physiol. 2022 Feb 4;188(2):703-712. doi: 10.1093/plphys/kiab508.
Plant cells communicate information for the regulation of development and responses to external stresses. A key form of this communication is transcriptional regulation, accomplished via complex gene networks operating both locally and systemically. To fully understand how genes are regulated across plant tissues and organs, high resolution, multi-dimensional spatial transcriptional data must be acquired and placed within a cellular and organismal context. Spatial transcriptomics (ST) typically provides a two-dimensional spatial analysis of gene expression of tissue sections that can be stacked to render three-dimensional data. For example, X-ray and light-sheet microscopy provide sub-micron scale volumetric imaging of cellular morphology of tissues, organs, or potentially entire organisms. Linking these technologies could substantially advance transcriptomics in plant biology and other fields. Here, we review advances in ST and 3D microscopy approaches and describe how these technologies could be combined to provide high resolution, spatially organized plant tissue transcript mapping.
植物细胞通过信息交流来调节发育和对外界胁迫的响应。这种交流的主要形式是通过局部和系统的复杂基因网络进行的转录调控。为了全面了解基因在植物组织和器官中的调控方式,必须获取高分辨率、多维空间转录组数据,并将其置于细胞和机体背景下。空间转录组学(ST)通常提供组织切片基因表达的二维空间分析,这些切片可以堆叠以呈现三维数据。例如,X 射线和光片显微镜提供组织、器官或潜在整个生物体的细胞形态的亚微米级体积成像。将这些技术结合起来可以极大地推动植物生物学和其他领域的转录组学发展。在这里,我们回顾了 ST 和 3D 显微镜方法的进展,并描述了如何将这些技术结合起来,提供高分辨率、空间组织的植物组织转录图谱。