Suppr超能文献

纳米硅酸盐-多糖复合水凝胶作为复杂生物骨模型组织等效材料的3D打印、组织学及放射学分析

3D Printing, Histological, and Radiological Analysis of Nanosilicate-Polysaccharide Composite Hydrogel as a Tissue-Equivalent Material for Complex Biological Bone Phantom.

作者信息

Valchanov Petar, Dukov Nikolay, Pavlov Stoyan, Kontny Andreas, Dikova Tsanka

机构信息

Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria.

Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria.

出版信息

Gels. 2023 Jul 5;9(7):547. doi: 10.3390/gels9070547.

Abstract

Nanosilicate-polysaccharide composite hydrogels are a well-studied class of materials in regenerative medicine that combine good 3D printability, staining, and biological properties, making them an excellent candidate material for complex bone scaffolds. The aim of this study was to develop a hydrogel suitable for 3D printing that has biological and radiological properties similar to those of the natural bone and to develop protocols for their histological and radiological analysis. We synthesized a hydrogel based on alginate, methylcellulose, and laponite, then 3D printed it into a series of complex bioscaffolds. The scaffolds were scanned with CT and CBCT scanners and exported as DICOM datasets, then cut into histological slides and stained using standard histological protocols. From the DICOM datasets, the average value of the voxels in Hounsfield Units (HU) was calculated and compared with natural trabecular bone. In the histological sections, we tested the effect of standard histological stains on the hydrogel matrix in the context of future cytological and histological analysis. The results confirmed that an alginate/methylcellulose/laponite-based composite hydrogel can be used for 3D printing of complex high fidelity three-dimensional scaffolds. This opens an avenue for the development of dynamic biological physical phantoms for bone tissue engineering and the development of new CT-based imaging algorithms for the needs of radiology and radiation therapy.

摘要

纳米硅酸盐 - 多糖复合水凝胶是再生医学中一类经过充分研究的材料,它兼具良好的3D打印性、染色性和生物学特性,使其成为复杂骨支架的理想候选材料。本研究的目的是开发一种适合3D打印的水凝胶,其生物学和放射学特性与天然骨相似,并制定其组织学和放射学分析方案。我们基于藻酸盐、甲基纤维素和锂皂石合成了一种水凝胶,然后将其3D打印成一系列复杂的生物支架。使用CT和CBCT扫描仪对支架进行扫描,并导出为DICOM数据集,然后切成组织学切片并使用标准组织学方案进行染色。从DICOM数据集中,计算出亨氏单位(HU)中体素的平均值,并与天然小梁骨进行比较。在组织学切片中,我们在未来的细胞学和组织学分析背景下测试了标准组织学染色对水凝胶基质的影响。结果证实,基于藻酸盐/甲基纤维素/锂皂石的复合水凝胶可用于复杂高保真三维支架的3D打印。这为骨组织工程动态生物物理模型的开发以及满足放射学和放射治疗需求的基于CT的新成像算法的开发开辟了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a819/10379613/1f6086f8237b/gels-09-00547-g001.jpg

相似文献

2
Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
J Biomed Mater Res A. 2017 May;105(5):1457-1468. doi: 10.1002/jbm.a.36036. Epub 2017 Feb 25.
3
High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications.
Biomater Adv. 2023 Jun;149:213414. doi: 10.1016/j.bioadv.2023.213414. Epub 2023 Apr 5.
5
3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
Curr Med Imaging. 2021;17(7):832-842. doi: 10.2174/1573405616666201217112939.
6
Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
ACS Appl Mater Interfaces. 2020 Jan 29;12(4):4343-4357. doi: 10.1021/acsami.9b22062. Epub 2020 Jan 17.
7
Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair.
Biomater Adv. 2023 Sep;152:213501. doi: 10.1016/j.bioadv.2023.213501. Epub 2023 Jun 8.
9
Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
J Mech Behav Biomed Mater. 2019 Oct;98:187-194. doi: 10.1016/j.jmbbm.2019.06.014. Epub 2019 Jun 22.
10
3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
Mater Sci Eng C Mater Biol Appl. 2020 Jul;112:110905. doi: 10.1016/j.msec.2020.110905. Epub 2020 Mar 30.

本文引用的文献

2
A 3D bioprinted nano-laponite hydrogel construct promotes osteogenesis by activating PI3K/AKT signaling pathway.
Mater Today Bio. 2022 Jul 1;16:100342. doi: 10.1016/j.mtbio.2022.100342. eCollection 2022 Dec.
3
3D printing methods for radiological anthropomorphic phantoms.
Phys Med Biol. 2022 Jul 27;67(15). doi: 10.1088/1361-6560/ac80e7.
4
Engineering the multiscale complexity of vascular networks.
Nat Rev Mater. 2022;7(9):702-716. doi: 10.1038/s41578-022-00447-8. Epub 2022 May 31.
7
Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication.
APL Bioeng. 2021 Feb 16;5(1):010904. doi: 10.1063/5.0032777. eCollection 2021 Mar.
8
3D-Printed High Strength Bioactive Supramolecular Polymer/Clay Nanocomposite Hydrogel Scaffold for Bone Regeneration.
ACS Biomater Sci Eng. 2017 Jun 12;3(6):1109-1118. doi: 10.1021/acsbiomaterials.7b00224. Epub 2017 May 26.
9
Review on Nanocrystalline Cellulose in Bone Tissue Engineering Applications.
Polymers (Basel). 2020 Nov 27;12(12):2818. doi: 10.3390/polym12122818.
10
Collagen as Bioink for Bioprinting: A Comprehensive Review.
Int J Bioprint. 2020 Apr 21;6(3):270. doi: 10.18063/ijb.v6i3.270. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验