文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的多频生物电阻抗分析估测胸腔积液网络系统的开发

Development of Machine Learning-Based Web System for Estimating Pleural Effusion Using Multi-Frequency Bioelectrical Impedance Analyses.

作者信息

Nose Daisuke, Matsui Tomokazu, Otsuka Takuya, Matsuda Yuki, Arimura Tadaaki, Yasumoto Keiichi, Sugimoto Masahiro, Miura Shin-Ichiro

机构信息

Department of Cardiology, Fukuoka University Faculty of Medicine, Fukuoka 814-0180, Japan.

Department of Cardiology, Fukuoka Heartnet Hospital, Fukuoka 819-0002, Japan.

出版信息

J Cardiovasc Dev Dis. 2023 Jul 7;10(7):291. doi: 10.3390/jcdd10070291.


DOI:10.3390/jcdd10070291
PMID:37504547
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10380905/
Abstract

BACKGROUND: Transthoracic impedance values have not been widely used to measure extravascular pulmonary water content due to accuracy and complexity concerns. Our aim was to develop a foundational model for a novel system aiming to non-invasively estimate the intrathoracic condition of heart failure patients. METHODS: We employed multi-frequency bioelectrical impedance analysis to simultaneously measure multiple frequencies, collecting electrical, physical, and hematological data from 63 hospitalized heart failure patients and 82 healthy volunteers. Measurements were taken upon admission and after treatment, and longitudinal analysis was conducted. RESULTS: Using a light gradient boosting machine, and a decision tree-based machine learning method, we developed an intrathoracic estimation model based on electrical measurements and clinical findings. Out of the 286 features collected, the model utilized 16 features. Notably, the developed model demonstrated high accuracy in discriminating patients with pleural effusion, achieving an area under the receiver characteristic curves (AUC) of 0.905 (95% CI: 0.870-0.940, < 0.0001) in the cross-validation test. The accuracy significantly outperformed the conventional frequency-based method with an AUC of 0.740 (95% CI: 0.688-0.792, and < 0.0001). CONCLUSIONS: Our findings indicate the potential of machine learning and transthoracic impedance measurements for estimating pleural effusion. By incorporating noninvasive and easily obtainable clinical and laboratory findings, this approach offers an effective means of assessing intrathoracic conditions.

摘要

背景:由于对准确性和复杂性的担忧,经胸阻抗值尚未广泛用于测量血管外肺水含量。我们的目标是为一种新型系统开发一个基础模型,该系统旨在无创估计心力衰竭患者的胸腔状况。 方法:我们采用多频生物电阻抗分析同时测量多个频率,收集了63名住院心力衰竭患者和82名健康志愿者的电学、物理和血液学数据。在入院时和治疗后进行测量,并进行纵向分析。 结果:使用轻梯度提升机和基于决策树的机器学习方法,我们基于电学测量和临床发现开发了一种胸腔估计模型。在所收集的286个特征中,该模型利用了16个特征。值得注意的是,所开发的模型在鉴别胸腔积液患者方面表现出高准确性,在交叉验证测试中,受试者工作特征曲线下面积(AUC)达到0.905(95%CI:0.870-0.940,<0.0001)。其准确性显著优于传统的基于频率的方法,后者的AUC为0.740(95%CI:0.688-0.792,<0.0001)。 结论:我们的研究结果表明机器学习和经胸阻抗测量在估计胸腔积液方面具有潜力。通过纳入无创且易于获得的临床和实验室检查结果,这种方法提供了一种评估胸腔状况的有效手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/65110d733aa1/jcdd-10-00291-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/e91885b37dd2/jcdd-10-00291-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/c0dbb79be998/jcdd-10-00291-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/9205e9efd943/jcdd-10-00291-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/1ea6699cf449/jcdd-10-00291-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/65110d733aa1/jcdd-10-00291-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/e91885b37dd2/jcdd-10-00291-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/c0dbb79be998/jcdd-10-00291-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/9205e9efd943/jcdd-10-00291-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/1ea6699cf449/jcdd-10-00291-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5844/10380905/65110d733aa1/jcdd-10-00291-g005.jpg

相似文献

[1]
Development of Machine Learning-Based Web System for Estimating Pleural Effusion Using Multi-Frequency Bioelectrical Impedance Analyses.

J Cardiovasc Dev Dis. 2023-7-7

[2]
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?

Clin Orthop Relat Res. 2020-7

[3]
Diagnosis of malignant pleural effusion with combinations of multiple tumor markers: A comparison study of five machine learning models.

Int J Biol Markers. 2023-6

[4]
Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods.

Med Eng Phys. 2008-12

[5]
Tree-Based Machine Learning Models with Optuna in Predicting Impedance Values for Circuit Analysis.

Micromachines (Basel). 2023-1-20

[6]
Feasibility of bioelectrical impedance spectroscopy measurement before and after thoracentesis.

Biomed Res Int. 2015

[7]
Development of a web-based calculator to predict three-month mortality among patients with bone metastases from cancer of unknown primary: An internally and externally validated study using machine-learning techniques.

Front Oncol. 2022-12-7

[8]
A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study.

J Med Internet Res. 2023-4-6

[9]
Predicting Health Material Accessibility: Development of Machine Learning Algorithms.

JMIR Med Inform. 2021-9-1

[10]
Tissue Recognition Based on Electrical Impedance Classified by Support Vector Machine in Spinal Operation Area.

Orthop Surg. 2022-9

引用本文的文献

[1]
Harnessing AI for Improved Detection and Classification of Pleural Effusion: Insights and Innovations.

Can Respir J. 2025-8-6

本文引用的文献

[1]
Prediction and Analysis of Heart Failure Decompensation Events Based on Telemonitored Data and Artificial Intelligence Methods.

J Cardiovasc Dev Dis. 2023-1-28

[2]
Digital health technology in the prevention of heart failure and coronary artery disease.

Cardiovasc Digit Health J. 2022-12-15

[3]
Remote Patient Monitoring in Heart Failure: Factors for Clinical Efficacy.

Int J Heart Fail. 2020-11-30

[4]
Medicine 2032: The future of cardiovascular disease prevention with machine learning and digital health technology.

Am J Prev Cardiol. 2022-8-29

[5]
A machine learning model based on ultrasound image features to assess the risk of sentinel lymph node metastasis in breast cancer patients: Applications of scikit-learn and SHAP.

Front Oncol. 2022-7-25

[6]
Toward the explainability, transparency, and universality of machine learning for behavioral classification in neuroscience.

Curr Opin Neurobiol. 2022-4

[7]
Construction and Interpretation of Prediction Model of Teicoplanin Trough Concentration Machine Learning.

Front Med (Lausanne). 2022-3-8

[8]
Global burden of heart failure: a comprehensive and updated review of epidemiology.

Cardiovasc Res. 2023-1-18

[9]
Heartlogic: ready for prime time?

Expert Rev Med Devices. 2022-2

[10]
Time-to-event prediction analysis of patients with chronic heart failure comorbid with atrial fibrillation: a LightGBM model.

BMC Cardiovasc Disord. 2021-8-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索