文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工智能改进胸腔积液的检测与分类:见解与创新

Harnessing AI for Improved Detection and Classification of Pleural Effusion: Insights and Innovations.

作者信息

Maule Geran, Alomari Ahmad, Rayyan Abdallah, Aghahowa Ogbeide, Khraisat Mohammad, Javier Luis

机构信息

Department of Clinical Sciences, University of Central Florida College of Medicine, Orlando, Florida, USA.

Department of Graduate Medical Education, HCA Florida North Florida Hospital, Gainesville, Florida, USA.

出版信息

Can Respir J. 2025 Aug 6;2025:2882255. doi: 10.1155/carj/2882255. eCollection 2025.


DOI:10.1155/carj/2882255
PMID:40809325
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349979/
Abstract

The detection and classification of pleural effusion present significant challenges in clinical practice, often contributing to delayed diagnoses and suboptimal patient outcomes. Recent advancements in artificial intelligence (AI) and machine learning (ML) techniques hold substantial promise for enhancing the accuracy and efficiency of pleural effusion diagnostics. This paper reviews the current landscape of AI applications in pleural effusion detection, synthesizing findings across diverse studies to illustrate the transformative potential of these technologies. We examine various ML models, including deep learning and ensemble methods, that leverage clinical, laboratory, and imaging data to improve diagnostic performance. Notably, models such as Light Gradient Boosting Machine (LGB) and XGBoost have achieved accuracy levels up to 96% and high AUC values (e.g., AUC = 0.883 for pleural effusion differentiation). This overview highlights the importance of integrating diverse diagnostic parameters to enhance pleural effusion diagnostic accuracy and outlines future research directions essential for optimizing patient management and outcomes.

摘要

胸腔积液的检测和分类在临床实践中面临重大挑战,常常导致诊断延迟和患者预后不佳。人工智能(AI)和机器学习(ML)技术的最新进展为提高胸腔积液诊断的准确性和效率带来了巨大希望。本文综述了AI在胸腔积液检测中的应用现状,综合不同研究的结果以阐明这些技术的变革潜力。我们研究了各种ML模型,包括深度学习和集成方法,这些模型利用临床、实验室和影像数据来提高诊断性能。值得注意的是,诸如轻梯度提升机(LGB)和XGBoost等模型已实现高达96%的准确率和较高的AUC值(例如,胸腔积液鉴别诊断的AUC = 0.883)。本综述强调了整合多种诊断参数以提高胸腔积液诊断准确性的重要性,并概述了优化患者管理和预后所需的未来研究方向。

相似文献

[1]
Harnessing AI for Improved Detection and Classification of Pleural Effusion: Insights and Innovations.

Can Respir J. 2025-8-6

[2]
Harnessing Machine Learning, a Subset of Artificial Intelligence, for Early Detection and Diagnosis of Type 1 Diabetes: A Systematic Review.

Int J Mol Sci. 2025-4-22

[3]
Interpretable noninvasive diagnosis of tuberculous pleural effusion using LGBM and SHAP: development and clinical application of a machine learning model.

PeerJ. 2025-5-20

[4]
Enhancing ultrasonographic detection of hepatocellular carcinoma with artificial intelligence: current applications, challenges and future directions.

BMJ Open Gastroenterol. 2025-7-1

[5]
Advances in artificial intelligence for diabetes prediction: insights from a systematic literature review.

Artif Intell Med. 2025-6

[6]
Artificial Intelligence in cancer epigenomics: a review on advances in pan-cancer detection and precision medicine.

Epigenetics Chromatin. 2025-6-14

[7]
Advancements in Herpes Zoster Diagnosis, Treatment, and Management: Systematic Review of Artificial Intelligence Applications.

J Med Internet Res. 2025-6-30

[8]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[9]
A comprehensive analysis of recent advancements in cancer detection using machine learning and deep learning models for improved diagnostics.

J Cancer Res Clin Oncol. 2023-11

[10]
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.

Future Sci OA. 2025-12

本文引用的文献

[1]
Should AI models be explainable to clinicians?

Crit Care. 2024-9-12

[2]
The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century.

Bioengineering (Basel). 2024-3-29

[3]
A support vector machine approach for identification of pleural effusion.

Heliyon. 2023-11-29

[4]
Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives.

Healthcare (Basel). 2024-1-5

[5]
Automatic deep learning-based pleural effusion segmentation in lung ultrasound images.

BMC Med Inform Decis Mak. 2023-11-29

[6]
Development and validation of a machine learning model for differential diagnosis of malignant pleural effusion using routine laboratory data.

Ther Adv Respir Dis. 2023

[7]
Differential Diagnosis of Pleural Effusion Using Machine Learning.

Ann Am Thorac Soc. 2024-2

[8]
Revolutionizing healthcare: the role of artificial intelligence in clinical practice.

BMC Med Educ. 2023-9-22

[9]
Development of Machine Learning-Based Web System for Estimating Pleural Effusion Using Multi-Frequency Bioelectrical Impedance Analyses.

J Cardiovasc Dev Dis. 2023-7-7

[10]
Diagnosis of malignant pleural effusion with combinations of multiple tumor markers: A comparison study of five machine learning models.

Int J Biol Markers. 2023-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索