Javaid Aamir, Zghyer Fawzi, Kim Chang, Spaulding Erin M, Isakadze Nino, Ding Jie, Kargillis Daniel, Gao Yumin, Rahman Faisal, Brown Donald E, Saria Suchi, Martin Seth S, Kramer Christopher M, Blumenthal Roger S, Marvel Francoise A
Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD 21287, USA.
Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
Am J Prev Cardiol. 2022 Aug 29;12:100379. doi: 10.1016/j.ajpc.2022.100379. eCollection 2022 Dec.
Machine learning (ML) refers to computational algorithms that iteratively improve their ability to recognize patterns in data. The digitization of our healthcare infrastructure is generating an abundance of data from electronic health records, imaging, wearables, and sensors that can be analyzed by ML algorithms to generate personalized risk assessments and promote guideline-directed medical management. ML's strength in generating insights from complex medical data to guide clinical decisions must be balanced with the potential to adversely affect patient privacy, safety, health equity, and clinical interpretability. This review provides a primer on key advances in ML for cardiovascular disease prevention and how they may impact clinical practice.
机器学习(ML)指的是通过迭代提高识别数据中模式能力的计算算法。我们医疗保健基础设施的数字化正在从电子健康记录、成像、可穿戴设备和传感器中产生大量数据,这些数据可由机器学习算法进行分析,以生成个性化风险评估并促进基于指南的医疗管理。机器学习在从复杂医疗数据中生成见解以指导临床决策方面的优势,必须与可能对患者隐私、安全、健康公平性和临床可解释性产生不利影响的潜在因素相平衡。本综述提供了机器学习在心血管疾病预防方面的关键进展及其可能对临床实践产生的影响的入门介绍。