Visser Nienke L, Turner Savannah J, Stewart Joseph A, Vandegehuchte Bart D, van der Hoeven Jessi E S, de Jongh Petra E
Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
TotalEnergies OneTech Belgium, B-7181 Seneffe, Belgium.
ACS Nano. 2023 Aug 8;17(15):14963-14973. doi: 10.1021/acsnano.3c03721. Epub 2023 Jul 28.
Understanding nanoparticle growth is crucial to increase the lifetime of supported metal catalysts. In this study, we employ gas-phase transmission electron microscopy to visualize the movement and growth of ensembles of tens of nickel nanoparticles supported on carbon for CO hydrogenation at atmospheric pressure (H:CO = 4:1) and relevant temperature (450 °C) in real time. We observe two modes of particle movement with an order of magnitude difference in velocity: fast, intermittent movement ( = 0.7 nm s) and slow, gradual movement ( = 0.05 nm s). We visualize the two distinct particle growth mechanisms: diffusion and coalescence, and Ostwald ripening. The diffusion and coalescence mechanism dominates at small interparticle distances, whereas Ostwald ripening is driven by differences in particle size. Strikingly, we demonstrate an interplay between the two mechanisms, where first coalescence takes place, followed by fast Ostwald ripening due to the increased difference in particle size. Our direct visualization of the complex nanoparticle growth mechanisms highlights the relevance of studying nanoparticle growth in supported nanoparticle ensembles under reaction conditions and contributes to the fundamental understanding of the stability in supported metal catalysts.
了解纳米颗粒的生长对于延长负载型金属催化剂的使用寿命至关重要。在本研究中,我们采用气相透射电子显微镜实时观察了数十个负载在碳上的镍纳米颗粒在常压(H:CO = 4:1)和相关温度(450°C)下用于CO加氢反应时的运动和生长情况。我们观察到两种颗粒运动模式,其速度相差一个数量级:快速、间歇性运动( = 0.7 nm s)和缓慢、渐进性运动( = 0.05 nm s)。我们可视化了两种不同的颗粒生长机制:扩散和聚结,以及奥斯特瓦尔德熟化。扩散和聚结机制在颗粒间距离较小时占主导,而奥斯特瓦尔德熟化则由颗粒尺寸差异驱动。引人注目的是,我们展示了这两种机制之间的相互作用,即首先发生聚结,随后由于颗粒尺寸差异增大而快速进行奥斯特瓦尔德熟化。我们对复杂纳米颗粒生长机制的直接可视化突出了在反应条件下研究负载型纳米颗粒集合体中纳米颗粒生长的重要性,并有助于从根本上理解负载型金属催化剂的稳定性。