文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

棘皮动物细胞外基质。

Extracellular Matrix of Echinoderms.

机构信息

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia.

出版信息

Mar Drugs. 2023 Jul 22;21(7):417. doi: 10.3390/md21070417.


DOI:10.3390/md21070417
PMID:37504948
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10381214/
Abstract

This review considers available data on the composition of the extracellular matrix (ECM) in echinoderms. The connective tissue in these animals has a rather complex organization. It includes a wide range of structural ECM proteins, as well as various proteases and their inhibitors. Members of almost all major groups of collagens, various glycoproteins, and proteoglycans have been found in echinoderms. There are enzymes for the synthesis of structural proteins and their modification by polysaccharides. However, the ECM of echinoderms substantially differs from that of vertebrates by the lack of elastin, fibronectins, tenascins, and some other glycoproteins and proteoglycans. Echinoderms have a wide variety of proteinases, with serine, cysteine, aspartic, and metal peptidases identified among them. Their active centers have a typical structure and can break down various ECM molecules. Echinoderms are also distinguished by a wide range of proteinase inhibitors. The complex ECM structure and the variety of intermolecular interactions evidently explain the complexity of the mechanisms responsible for variations in the mechanical properties of connective tissue in echinoderms. These mechanisms probably depend not only on the number of cross-links between the molecules, but also on the composition of ECM and the properties of its proteins.

摘要

这篇综述考虑了关于棘皮动物细胞外基质 (ECM) 组成的现有数据。这些动物的结缔组织具有相当复杂的组织。它包括广泛的结构 ECM 蛋白,以及各种蛋白酶及其抑制剂。在棘皮动物中发现了几乎所有主要胶原家族成员、各种糖蛋白和蛋白聚糖。存在用于合成结构蛋白及其通过多糖修饰的酶。然而,棘皮动物的 ECM 与脊椎动物的 ECM 有很大的不同,因为棘皮动物的 ECM 缺乏弹性蛋白、纤连蛋白、腱蛋白和一些其他糖蛋白和蛋白聚糖。棘皮动物具有各种各样的蛋白酶,其中鉴定出丝氨酸、半胱氨酸、天冬氨酸和金属肽酶。它们的活性中心具有典型的结构,可以分解各种 ECM 分子。棘皮动物还以广泛的蛋白酶抑制剂为特征。复杂的 ECM 结构和多种分子间相互作用显然解释了负责棘皮动物结缔组织机械性能变化的机制的复杂性。这些机制可能不仅取决于分子之间交联的数量,还取决于 ECM 的组成及其蛋白质的性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/8bb822795ed4/marinedrugs-21-00417-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/6e0ae266c033/marinedrugs-21-00417-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/168e8077e09d/marinedrugs-21-00417-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/525ef1712305/marinedrugs-21-00417-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/f108b8227238/marinedrugs-21-00417-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/71fb7927c455/marinedrugs-21-00417-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/848d51967b5b/marinedrugs-21-00417-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/a12cdd0cfb24/marinedrugs-21-00417-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/bc395ca5f995/marinedrugs-21-00417-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/be72a2c6c7a1/marinedrugs-21-00417-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/3e1a465eb788/marinedrugs-21-00417-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/0074cb15d9e5/marinedrugs-21-00417-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/ef1cecdb7454/marinedrugs-21-00417-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/c4953bb02ecf/marinedrugs-21-00417-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/5cb56641295f/marinedrugs-21-00417-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/40bce5bf5574/marinedrugs-21-00417-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/aebc2b5341db/marinedrugs-21-00417-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/f1611bc67904/marinedrugs-21-00417-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/d36493880738/marinedrugs-21-00417-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/8bb822795ed4/marinedrugs-21-00417-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/6e0ae266c033/marinedrugs-21-00417-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/168e8077e09d/marinedrugs-21-00417-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/525ef1712305/marinedrugs-21-00417-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/f108b8227238/marinedrugs-21-00417-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/71fb7927c455/marinedrugs-21-00417-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/848d51967b5b/marinedrugs-21-00417-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/a12cdd0cfb24/marinedrugs-21-00417-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/bc395ca5f995/marinedrugs-21-00417-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/be72a2c6c7a1/marinedrugs-21-00417-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/3e1a465eb788/marinedrugs-21-00417-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/0074cb15d9e5/marinedrugs-21-00417-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/ef1cecdb7454/marinedrugs-21-00417-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/c4953bb02ecf/marinedrugs-21-00417-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/5cb56641295f/marinedrugs-21-00417-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/40bce5bf5574/marinedrugs-21-00417-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/aebc2b5341db/marinedrugs-21-00417-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/f1611bc67904/marinedrugs-21-00417-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/d36493880738/marinedrugs-21-00417-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b459/10381214/8bb822795ed4/marinedrugs-21-00417-g019.jpg

相似文献

[1]
Extracellular Matrix of Echinoderms.

Mar Drugs. 2023-7-22

[2]
Possible Mechanisms of Stiffness Changes Induced by Stiffeners and Softeners in Catch Connective Tissue of Echinoderms.

Mar Drugs. 2023-2-23

[3]
Molecular mechanisms of fission in echinoderms: Transcriptome analysis.

PLoS One. 2018-4-12

[4]
Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Echinoderms: Structure and Possible Functions.

Cells. 2021-9-6

[5]
Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins.

Adv Exp Med Biol. 2021

[6]
Extracellular Matrix Interactome in Modulating Vascular Homeostasis and Remodeling.

Circ Res. 2024-3-29

[7]
Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue.

Int J Mol Sci. 2017-4-25

[8]
Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

Adv Exp Med Biol. 2014

[9]
Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure.

J Biol Chem. 2012-5-9

[10]
Extracellular matrix.

FEBS Lett. 1990-8-1

引用本文的文献

[1]
LncRNA-miRNA interplay regulate intestinal regeneration in the sea cucumber .

Comput Struct Biotechnol J. 2025-3-31

[2]
Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium.

Elife. 2025-3-20

[3]
Collagen formation, function and role in kidney disease.

Nat Rev Nephrol. 2025-3

[4]
Structural and physiological functions of epidermis.

Heliyon. 2024-9-28

[5]
Effects of Vitamin C on the Gonad Growth, Texture Traits, Collagen Content and Synthesis Related Gene Expression of Sea Urchin ().

Animals (Basel). 2024-9-3

[6]
Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium.

bioRxiv. 2024-12-31

[7]
Basement Membranes, Brittlestar Tendons, and Their Mechanical Adaptability.

Biology (Basel). 2024-5-24

本文引用的文献

[1]
Characteristics of the Intestine Extracts and Their Effect on the Crude Collagen Fibers of the Body Wall from Sea Cucumber .

Biology (Basel). 2023-5-12

[2]
Possible Mechanisms of Stiffness Changes Induced by Stiffeners and Softeners in Catch Connective Tissue of Echinoderms.

Mar Drugs. 2023-2-23

[3]
Morphological and Physiological Aspects of Mutable Collagenous Tissue at the Autotomy Plane of the Starfish L. (Echinodermata, Asteroidea): An Echinoderm Paradigm.

Mar Drugs. 2023-2-22

[4]
Muscle Regeneration in Holothurians without the Upregulation of Muscle Genes.

Int J Mol Sci. 2022-12-16

[5]
EchinoDB: an update to the web-based application for genomic and transcriptomic data on echinoderms.

BMC Genom Data. 2022-10-23

[6]
The many roles of dystroglycan in nervous system development and function: Dystroglycan and neural circuit development: Dystroglycan and neural circuit development.

Dev Dyn. 2023-1

[7]
Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration.

Front Cell Dev Biol. 2022-4-1

[8]
Molecular mechanisms mediating stiffening in the mechanically adaptable connective tissues of sea cucumbers.

Matrix Biol. 2022-4

[9]
Role of Serine Proteases at the Tumor-Stroma Interface.

Front Immunol. 2022

[10]
Regeneration in Echinoderms: Molecular Advancements.

Front Cell Dev Biol. 2021-12-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索