Suppr超能文献

多变量机器学习模型用于预测乳腺癌新辅助治疗的病理反应:使用独立验证集进行的研究。

Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set.

机构信息

Department of Radiology, Duke University School of Medicine, 2301 Erwin Road, Durham, NC, 27705, USA.

Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Breast Cancer Res Treat. 2019 Jan;173(2):455-463. doi: 10.1007/s10549-018-4990-9. Epub 2018 Oct 16.

Abstract

PURPOSE

To determine whether a multivariate machine learning-based model using computer-extracted features of pre-treatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer patients.

METHODS

Institutional review board approval was obtained for this retrospective study of 288 breast cancer patients at our institution who received NAT and had a pre-treatment breast MRI. A comprehensive set of 529 radiomic features was extracted from each patient's pre-treatment MRI. The patients were divided into equal groups to form a training set and an independent test set. Two multivariate machine learning models (logistic regression and a support vector machine) based on imaging features were trained to predict pCR in (a) all patients with NAT, (b) patients with neoadjuvant chemotherapy (NACT), and (c) triple-negative or human epidermal growth factor receptor 2-positive (TN/HER2+) patients who had NAT. The multivariate models were tested using the independent test set, and the area under the receiver operating characteristics (ROC) curve (AUC) was calculated.

RESULTS

Out of the 288 patients, 64 achieved pCR. The AUC values for predicting pCR in TN/HER+ patients who received NAT were significant (0.707, 95% CI 0.582-0.833, p < 0.002).

CONCLUSIONS

The multivariate models based on pre-treatment MRI features were able to predict pCR in TN/HER2+ patients.

摘要

目的

利用基于计算机提取的预处理动态对比增强磁共振成像(DCE-MRI)的特征,确定多元机器学习模型是否可以预测乳腺癌患者新辅助治疗(NAT)后的病理完全缓解(pCR)。

方法

本回顾性研究在我院获得机构审查委员会批准,共纳入 288 例接受 NAT 并进行治疗前乳腺 MRI 的乳腺癌患者。从每位患者的治疗前 MRI 中提取了一套全面的 529 个放射组学特征。将患者分为相等的组,形成训练集和独立测试集。基于成像特征训练了两种多元机器学习模型(逻辑回归和支持向量机),以预测(a)所有接受 NAT 的患者、(b)接受新辅助化疗(NACT)的患者和(c)接受 NAT 的三阴性或人表皮生长因子受体 2 阳性(TN/HER2+)患者的 pCR。使用独立测试集测试多元模型,并计算接收器操作特征(ROC)曲线下的面积(AUC)。

结果

在 288 例患者中,有 64 例获得了 pCR。在接受 NAT 的 TN/HER2+患者中,预测 pCR 的 AUC 值具有显著意义(0.707,95%CI 0.582-0.833,p<0.002)。

结论

基于治疗前 MRI 特征的多元模型能够预测 TN/HER2+患者的 pCR。

相似文献

3
8
Role of F-PET/CT in Predicting Prognosis of Patients With Breast Cancer After Neoadjuvant Chemotherapy.
Clin Breast Cancer. 2018 Feb;18(1):45-52. doi: 10.1016/j.clbc.2017.09.006. Epub 2017 Sep 19.
10
Machine learning for diagnostic ultrasound of triple-negative breast cancer.
Breast Cancer Res Treat. 2019 Jan;173(2):365-373. doi: 10.1007/s10549-018-4984-7. Epub 2018 Oct 20.

引用本文的文献

本文引用的文献

1
Effects of MRI scanner parameters on breast cancer radiomics.
Expert Syst Appl. 2017 Nov 30;87:384-391. doi: 10.1016/j.eswa.2017.06.029. Epub 2017 Jun 20.
3
Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients.
Eur J Radiol. 2017 Sep;94:140-147. doi: 10.1016/j.ejrad.2017.06.019. Epub 2017 Jun 28.
4
Neoadjuvant chemotherapy with MRI monitoring for breast cancer.
Br J Surg. 2017 Aug;104(9):1177-1187. doi: 10.1002/bjs.10544. Epub 2017 Jun 28.
8
Early Prediction and Evaluation of Breast Cancer Response to Neoadjuvant Chemotherapy Using Quantitative DCE-MRI.
Transl Oncol. 2016 Feb;9(1):8-17. doi: 10.1016/j.tranon.2015.11.016. Epub 2016 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验