Suppr超能文献

Good Practices and Limitations of the Hydrogen Pump Technique for Catalyst Layer Protonic Conductivity Estimation.

作者信息

Moore Michael, Mandal Manas, Kosakian Aslan, Secanell Marc

机构信息

Energy Systems Design Laboratory, Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2J5, Canada.

出版信息

ACS Appl Mater Interfaces. 2023 Aug 9;15(31):37312-37326. doi: 10.1021/acsami.3c04820. Epub 2023 Jul 28.

Abstract

The hydrogen pump technique has been shown to be an effective method to measure the effective protonic conductivity of intermediate layers (ILs) that mimic the catalyst layers used in proton exchange membrane fuel cells and electrolyzers. It has been hypothesized, however, that the technique is limited to testing ILs that are inactive during the hydrogen reaction as proton transport through the ionomer in the layer can be bypassed by transferring the charge to the electronic phase via the reaction. This work uses numerical modeling, supported by experimental testing, to investigate the impact of IL hydrogen reaction activity, thickness, and electronic conductivity on the prediction of the IL protonic conductivity. A transient, 2-D, through-the-channel model is developed and implemented using the finite element method to predict the performance of hydrogen pump cells and perform electrochemical impedance spectroscopy. It is shown both numerically and experimentally that for iridium black and for platinum-/carbon-based ILs, the protonic phase is almost entirely bypassed, reducing the overall cell resistance and making the determination of the true conductivity difficult. The model can be used to provide an estimate of the resistance of the active layers, which is not possible using only experiments. In addition, the interfacial contact resistance between the membrane and the catalyst layers is determined using the high-frequency resistance, and the alternating current method for the hydrogen pump is studied to determine the accuracy of the method. Finally, further insights are provided through a breakdown of the resistances of each phase, as well as the potential profiles, in an active IL, and through parametric studies on the impact of varying the IL activity, thickness, and electronic conductivity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验