Suppr超能文献

使用新型混合神经网络框架和数学方法预测化学混合物的剂量依赖性致癌性。

Predicting Dose-Dependent Carcinogenicity of Chemical Mixtures Using a Novel Hybrid Neural Network Framework and Mathematical Approach.

作者信息

Limbu Sarita, Dakshanamurthy Sivanesan

机构信息

Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.

出版信息

Toxics. 2023 Jul 12;11(7):605. doi: 10.3390/toxics11070605.

Abstract

This study addresses the challenge of assessing the carcinogenic potential of hazardous chemical mixtures, such as per- and polyfluorinated substances (PFASs), which are known to contribute significantly to cancer development. Here, we propose a novel framework called HNN that utilizes a hybrid neural network (HNN) integrated into a machine-learning framework. This framework incorporates a mathematical model to simulate chemical mixtures, enabling the creation of classification models for binary (carcinogenic or noncarcinogenic) and multiclass classification (categorical carcinogenicity) and regression (carcinogenic potency). Through extensive experimentation, we demonstrate that our HNN model outperforms other methodologies, including random forest, bootstrap aggregating, adaptive boosting, support vector regressor, gradient boosting, kernel ridge, decision tree with AdaBoost, and KNeighbors, achieving a superior accuracy of 92.7% in binary classification. To address the limited availability of experimental data and enrich the training data, we generate an assumption-based virtual library of chemical mixtures using a known carcinogenic and noncarcinogenic single chemical for all the classification models. Remarkably, in this case, all methods achieve accuracies exceeding 98% for binary classification. In external validation tests, our HNN method achieves the highest accuracy of 80.5%. Furthermore, in multiclass classification, the HNN demonstrates an overall accuracy of 96.3%, outperforming RF, Bagging, and AdaBoost, which achieved 91.4%, 91.7%, and 80.2%, respectively. In regression models, HNN, RF, SVR, GB, KR, DT with AdaBoost, and KN achieved average R values of 0.96, 0.90, 0.77, 0.94, 0.96, 0.96, and 0.97, respectively, showcasing their effectiveness in predicting the concentration at which a chemical mixture becomes carcinogenic. Our method exhibits exceptional predictive power in prioritizing carcinogenic chemical mixtures, even when relying on assumption-based mixtures. This capability is particularly valuable for toxicology studies that lack experimental data on the carcinogenicity and toxicity of chemical mixtures. To our knowledge, this study introduces the first method for predicting the carcinogenic potential of chemical mixtures. The HNN framework offers a novel alternative for dose-dependent carcinogen prediction. Ongoing efforts involve implementing the HNN method to predict mixture toxicity and expanding the application of HNN to include multiple mixtures such as PFAS mixtures and co-occurring chemicals.

摘要

本研究应对了评估有害化学混合物致癌潜力的挑战,例如全氟和多氟烷基物质(PFASs),已知它们对癌症发展有重大影响。在此,我们提出了一种名为HNN的新型框架,它利用集成到机器学习框架中的混合神经网络(HNN)。该框架纳入了一个数学模型来模拟化学混合物,从而能够创建用于二元(致癌或非致癌)和多类分类(分类致癌性)以及回归(致癌效力)的分类模型。通过广泛的实验,我们证明我们的HNN模型优于其他方法,包括随机森林、装袋法、自适应增强、支持向量回归、梯度提升、核岭回归、带AdaBoost的决策树和K近邻算法,在二元分类中达到了92.7%的卓越准确率。为了解决实验数据可用性有限的问题并丰富训练数据,我们使用已知的致癌和非致癌单一化学品为所有分类模型生成了一个基于假设的化学混合物虚拟库。值得注意的是,在这种情况下,所有方法在二元分类中的准确率都超过了98%。在外部验证测试中,我们的HNN方法达到了80.5%的最高准确率。此外,在多类分类中,HNN的总体准确率为96.3%,优于分别达到91.4%、91.7%和80.2%的随机森林、装袋法和自适应增强算法。在回归模型中,HNN、随机森林、支持向量回归、梯度提升、核岭回归、带AdaBoost的决策树和K近邻算法的平均R值分别为0.96、0.90、0.77、0.94、0.96、0.96和0.97,展示了它们在预测化学混合物致癌浓度方面的有效性。即使依赖基于假设的混合物,我们的方法在对致癌化学混合物进行优先级排序时也表现出了卓越的预测能力。这种能力对于缺乏化学混合物致癌性和毒性实验数据的毒理学研究尤为有价值。据我们所知,本研究介绍了第一种预测化学混合物致癌潜力的方法。HNN框架为剂量依赖性致癌物预测提供了一种新的选择。正在进行的工作包括实施HNN方法来预测混合物毒性,并将HNN的应用扩展到包括PFAS混合物和共现化学品等多种混合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b735/10383376/15a56541e7e7/toxics-11-00605-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验