Limbu Sarita, Glasgow Eric, Block Tessa, Dakshanamurthy Sivanesan
Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3700 O St. NW, Washington, DC 20057, USA.
Toxics. 2024 Jun 30;12(7):481. doi: 10.3390/toxics12070481.
Environmental chemicals, such as PFAS, exist as mixtures and are frequently encountered at varying concentrations, which can lead to serious health effects, such as cancer. Therefore, understanding the dose-dependent toxicity of chemical mixtures is essential for health risk assessment. However, comprehensive methods to assess toxicity and identify the mechanisms of these harmful mixtures are currently absent. In this study, the dose-dependent toxicity assessments of chemical mixtures are performed in three methodologically distinct phases. In the first phase, we evaluated our machine-learning method (AI-HNN) and pathophysiology method (CPTM) for predicting toxicity. In the second phase, we integrated AI-HNN and CPTM to establish a comprehensive new approach method (NAM) framework called AI-CPTM that is targeted at refining prediction accuracy and providing a comprehensive understanding of toxicity mechanisms. The third phase involved experimental validations of the AI-CPTM predictions. Initially, we developed binary, multiclass classification, and regression models to predict binary, categorical toxicity, and toxic potencies using nearly a thousand experimental mixtures. This empirical dataset was expanded with assumption-based virtual mixtures, compensating for the lack of experimental data and broadening the scope of the dataset. For comparison, we also developed machine-learning models based on RF, Bagging, AdaBoost, SVR, GB, KR, DT, KN, and Consensus methods. The AI-HNN achieved overall accuracies of over 80%, with the AUC exceeding 90%. In the final phase, we demonstrated the superior performance and predictive capability of AI-CPTM, including for PFAS mixtures and their interaction effects, through rigorous literature and statistical validations, along with experimental dose-response zebrafish-embryo toxicity assays. Overall, the AI-CPTM approach significantly improves upon the limitations of standalone AI models, showing extensive enhancements in identifying toxic chemicals and mixtures and their mechanisms. This study is the first to develop a hybrid NAM that integrates AI with a pathophysiology method to comprehensively predict chemical-mixture toxicity, carcinogenicity, and mechanisms.
环境化学物质,如全氟和多氟烷基物质(PFAS),以混合物形式存在,且经常在不同浓度下被接触到,这可能导致严重的健康影响,如癌症。因此,了解化学混合物的剂量依赖性毒性对于健康风险评估至关重要。然而,目前缺乏评估毒性和确定这些有害混合物作用机制的综合方法。在本研究中,化学混合物的剂量依赖性毒性评估分三个方法上截然不同的阶段进行。在第一阶段,我们评估了用于预测毒性的机器学习方法(AI-HNN)和病理生理学方法(CPTM)。在第二阶段,我们将AI-HNN和CPTM整合,建立了一种名为AI-CPTM的综合新方法(NAM)框架,旨在提高预测准确性并全面了解毒性机制。第三阶段涉及对AI-CPTM预测的实验验证。最初,我们开发了二元、多类分类和回归模型,使用近千种实验混合物来预测二元、分类毒性和毒性强度。这个经验数据集通过基于假设的虚拟混合物进行了扩展,弥补了实验数据的不足并拓宽了数据集的范围。为了进行比较,我们还基于随机森林(RF)、装袋法(Bagging)、自适应增强算法(AdaBoost)、支持向量回归(SVR)、梯度提升(GB)、核岭回归(KR)、决策树(DT)、K近邻(KN)和共识方法开发了机器学习模型。AI-HNN的总体准确率超过80%,曲线下面积(AUC)超过90%。在最后阶段,我们通过严格的文献和统计验证以及实验剂量反应斑马鱼胚胎毒性试验,证明了AI-CPTM的卓越性能和预测能力,包括对PFAS混合物及其相互作用效应的预测能力。总体而言,AI-CPTM方法显著改进了独立AI模型的局限性,在识别有毒化学物质和混合物及其作用机制方面有了广泛的提升。本研究首次开发了一种将AI与病理生理学方法相结合的混合NAM,以全面预测化学混合物的毒性、致癌性及其作用机制。