Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Toxins (Basel). 2023 Jun 27;15(7):417. doi: 10.3390/toxins15070417.
bloodstream (SAB) infection remains a leading cause of sepsis-related mortality. Yet, current treatment does not account for variable virulence traits that mediate host dysregulated immune response, such as SA α-toxin (Hla)-mediated thrombocytopenia. Here, we applied machine learning (ML) to bacterial growth images combined with platelet count data to predict patient outcomes. We profiled Hla phenotypes of SA isolates collected from patients with bacteremia by taking smartphone images of beta-hemolytic growth on sheep blood agar (SBA). Electronic medical records were reviewed to extract relevant laboratory and clinical data. A convolutional neural network was applied to process the plate image data for input along with day 1 patient platelet count to generate ML-based models that predict thrombocytopenia on day 4 and mortality. A total of 229 patients infected with SA strains exhibiting varying zone sizes of beta-hemolysis on SBA were included. A total of 539 images of bacterial growth on SBA were generated as inputs for model development. One-third of patients developed thrombocytopenia at onset, with an overall mortality rate of 18.8%. The models developed from the ML algorithm showed strong performance (AUC 0.92) for predicting thrombocytopenia on day 4 of infection and modest performance (AUC 0.711) for mortality. Our findings support further development and validation of a proof-of-concept ML application in digital microbiology, with a measure of bacterial virulence factor production that carries prognostic significance and can help guide treatment selection.
血流(SAB)感染仍然是导致脓毒症相关死亡率的主要原因。然而,目前的治疗方法并未考虑到介导宿主失调免疫反应的可变毒力特征,例如 SA α-毒素(Hla)介导的血小板减少症。在这里,我们应用机器学习(ML)对细菌生长图像结合血小板计数数据进行分析,以预测患者的预后。我们通过拍摄绵羊血琼脂(SBA)上β溶血生长的智能手机图像,对从菌血症患者中收集的 SA 分离株的 Hla 表型进行了分析。回顾电子病历以提取相关的实验室和临床数据。我们应用卷积神经网络处理平板图像数据作为输入,并结合患者入院第 1 天的血小板计数,生成基于 ML 的模型,以预测第 4 天的血小板减少症和死亡率。共纳入 229 名感染 SA 株的患者,这些菌株在 SBA 上表现出不同大小的β溶血区。总共生成了 539 张 SBA 上细菌生长的图像作为模型开发的输入。三分之一的患者在发病时出现血小板减少症,总死亡率为 18.8%。从 ML 算法开发的模型在预测感染第 4 天的血小板减少症方面表现出很强的性能(AUC 0.92),在预测死亡率方面表现出中等性能(AUC 0.711)。我们的研究结果支持进一步开发和验证数字微生物学中基于 ML 的应用的概念验证,该应用可以衡量细菌毒力因子的产生,具有预后意义,并有助于指导治疗选择。