数字微生物学。
Digital microbiology.
机构信息
Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
Laboratory of Bacteriology, University Hospitals of Geneva, Geneva, Switzerland.
出版信息
Clin Microbiol Infect. 2020 Oct;26(10):1324-1331. doi: 10.1016/j.cmi.2020.06.023. Epub 2020 Jun 27.
BACKGROUND
Digitalization and artificial intelligence have an important impact on the way microbiology laboratories will work in the near future. Opportunities and challenges lie ahead to digitalize the microbiological workflows. Making efficient use of big data, machine learning, and artificial intelligence in clinical microbiology requires a profound understanding of data handling aspects.
OBJECTIVE
This review article summarizes the most important concepts of digital microbiology. The article gives microbiologists, clinicians and data scientists a viewpoint and practical examples along the diagnostic process.
SOURCES
We used peer-reviewed literature identified by a PubMed search for digitalization, machine learning, artificial intelligence and microbiology.
CONTENT
We describe the opportunities and challenges of digitalization in microbiological diagnostic processes with various examples. We also provide in this context key aspects of data structure and interoperability, as well as legal aspects. Finally, we outline the way for applications in a modern microbiology laboratory.
IMPLICATIONS
We predict that digitalization and the usage of machine learning will have a profound impact on the daily routine of laboratory staff. Along the analytical process, the most important steps should be identified, where digital technologies can be applied and provide a benefit. The education of all staff involved should be adapted to prepare for the advances in digital microbiology.
背景
数字化和人工智能将对微生物学实验室在不久的将来的工作方式产生重要影响。数字化微生物学工作流程既有机遇也有挑战。要在临床微生物学中有效地利用大数据、机器学习和人工智能,就需要深刻理解数据处理方面的知识。
目的
本文综述了数字微生物学的一些重要概念。文章为微生物学家、临床医生和数据科学家提供了沿着诊断过程的观点和实际示例。
资料来源
我们使用了通过 PubMed 搜索数字化、机器学习、人工智能和微生物学获得的同行评审文献。
内容
我们通过各种示例描述了数字化在微生物学诊断过程中的机遇和挑战。在此背景下,我们还介绍了数据结构和互操作性以及法律方面的关键方面。最后,我们概述了在现代化微生物学实验室中应用的途径。
意义
我们预计数字化和机器学习的使用将对实验室工作人员的日常工作产生深远的影响。沿着分析过程,应确定可以应用数字技术并提供益处的最重要步骤。应调整所有相关人员的教育,以准备迎接数字微生物学的进步。