Global Health Research Center, Duke Kunshan University, Kunshan, China.
Department of Global Health, School of Public Health, Wuhan University, Wuhan, China.
J Med Internet Res. 2023 Jul 28;25:e45111. doi: 10.2196/45111.
Rapid advancements in eHealth and mobile health (mHealth) technologies have driven researchers to design and evaluate numerous technology-based interventions to promote smoking cessation. The evolving nature of cessation interventions emphasizes a strong need for knowledge synthesis.
This systematic review and meta-analysis aimed to summarize recent evidence from randomized controlled trials regarding the effectiveness of eHealth-based smoking cessation interventions in promoting abstinence and assess nonabstinence outcome indicators, such as cigarette consumption and user satisfaction, via narrative synthesis.
We searched for studies published in English between 2017 and June 30, 2022, in 4 databases: PubMed (including MEDLINE), PsycINFO, Embase, and Cochrane Library. Two independent reviewers performed study screening, data extraction, and quality assessment based on the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) framework. We pooled comparable studies based on the population, follow-up time, intervention, and control characteristics. Two researchers performed an independent meta-analysis on smoking abstinence using the Sidik-Jonkman random-effects model and log risk ratio (RR) as the effect measurement. For studies not included in the meta-analysis, the outcomes were narratively synthesized.
A total of 464 studies were identified through an initial database search after removing duplicates. Following screening and full-text assessments, we deemed 39 studies (n=37,341 participants) eligible for this review. Of these, 28 studies were shortlisted for meta-analysis. According to the meta-analysis, SMS or app text messaging can significantly increase both short-term (3 months) abstinence (log RR=0.50, 95% CI 0.25-0.75; I=0.72%) and long-term (6 months) abstinence (log RR=0.77, 95% CI 0.49-1.04; I=8.65%), relative to minimal cessation support. The frequency of texting did not significantly influence treatment outcomes. mHealth apps may significantly increase abstinence in the short term (log RR=0.76, 95% CI 0.09-1.42; I=88.02%) but not in the long term (log RR=0.15, 95% CI -0.18 to 0.48; I=80.06%), in contrast to less intensive cessation support. In addition, personalized or interactive interventions showed a moderate increase in cessation for both the short term (log RR=0.62, 95% CI 0.30-0.94; I=66.50%) and long term (log RR=0.28, 95% CI 0.04-0.53; I=73.42%). In contrast, studies without any personalized or interactive features had no significant impact. Finally, the treatment effect was similar between trials that used biochemically verified or self-reported abstinence. Among studies reporting outcomes besides abstinence (n=20), a total of 11 studies reported significantly improved nonabstinence outcomes in cigarette consumption (3/14, 21%) or user satisfaction (8/19, 42%).
Our review of 39 randomized controlled trials found that recent eHealth interventions might promote smoking cessation, with mHealth being the dominant approach. Despite their success, the effectiveness of such interventions may diminish with time. The design of more personalized interventions could potentially benefit future studies.
PROSPERO CRD42022347104; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=347104.
电子健康和移动健康(mHealth)技术的快速发展促使研究人员设计和评估了许多基于技术的干预措施来促进戒烟。戒烟干预措施的不断发展强调了对知识综合的强烈需求。
本系统评价和荟萃分析旨在总结最近来自随机对照试验的证据,评估基于电子健康的戒烟干预措施在促进戒烟方面的有效性,并通过叙述性综合评估非戒烟结果指标,如吸烟量和用户满意度。
我们在 4 个数据库(PubMed(包括 MEDLINE)、PsycINFO、Embase 和 Cochrane Library)中搜索了 2017 年至 2022 年 6 月 30 日期间发表的英文研究。两名独立审查员根据 GRADE(推荐评估、制定和评估分级)框架进行了研究筛选、数据提取和质量评估。我们根据人群、随访时间、干预和对照特征对具有可比性的研究进行了汇总。两名研究人员使用 Sidik-Jonkman 随机效应模型和对数风险比(RR)作为效应测量对吸烟戒断进行了独立荟萃分析。对于未纳入荟萃分析的研究,结果进行了叙述性综合。
通过初步数据库搜索去除重复项后,共确定了 464 项研究。经过筛选和全文评估,我们认为 39 项研究(n=37341 名参与者)符合本综述的纳入标准。其中,28 项研究被选入荟萃分析。根据荟萃分析,短信或应用程序短信可以显著增加短期(3 个月)戒烟(对数 RR=0.50,95%CI 0.25-0.75;I=0.72%)和长期(6 个月)戒烟(对数 RR=0.77,95%CI 0.49-1.04;I=8.65%),与最低限度的戒烟支持相比。短信的频率并不显著影响治疗结果。移动健康应用程序可能会显著增加短期(对数 RR=0.76,95%CI 0.09-1.42;I=88.02%)的戒烟率,但不会增加长期(对数 RR=0.15,95%CI-0.18 至 0.48;I=80.06%)的戒烟率,与较低强度的戒烟支持相比。此外,个性化或互动干预在短期(对数 RR=0.62,95%CI 0.30-0.94;I=66.50%)和长期(对数 RR=0.28,95%CI 0.04-0.53;I=73.42%)的戒烟方面都显示出适度的增加。相比之下,没有任何个性化或互动功能的研究没有显著影响。最后,在使用生物化学验证或自我报告的戒烟结果的试验中,治疗效果相似。在报告除戒烟以外的结果(n=20)的研究中,共有 11 项研究报告了吸烟量(3/14,21%)或用户满意度(8/19,42%)的非戒烟结果显著改善。
我们对 39 项随机对照试验的综述发现,最近的电子健康干预措施可能有助于戒烟,其中移动健康是主要方法。尽管取得了成功,但随着时间的推移,这些干预措施的有效性可能会减弱。设计更个性化的干预措施可能会对未来的研究有所帮助。
PROSPERO CRD42022347104;https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=347104.