Suppr超能文献

评估基于行波结构的离子累积和存储以实现无损离子操控。

Evaluating Ion Accumulation and Storage in Traveling Wave Based Structures for Lossless Ion Manipulations.

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States.

出版信息

J Am Soc Mass Spectrom. 2023 Dec 6;34(12):2849-2856. doi: 10.1021/jasms.3c00348. Epub 2023 Nov 20.

Abstract

Structures for lossless ion manipulations (SLIM) technology has demonstrated high resolving power ion mobility separation and flexibility to integrate complex ion manipulations into a single experimental platform. To enable IMS separations, trapping/accumulating ions inside SLIM (or in-SLIM) prior to injection of a packet for separations provides ease of operation and reduces the need for dedicated ion traps external to SLIM. To fully characterize the ion accumulation process, we have evaluated the effect of TW amplitudes, ion collection times, and storage times on the "in-SLIM" accumulation process. The study utilized a SLIM module comprising 5 distinct tracks, each with a specific ion accumulation configuration. The effect of the TW conditions on the accumulation process was investigated for a 3-peptide mixture: kemptide, angiotensin II, and neurotensin at a TW speed of 106 m/s. The effect of ion accumulation time/collection time and storage time was investigated, in addition to TW amplitude. Overall, the signal of the analyte ions increased when the ion collection time increased from 49 to 163 ms but decreased when the ion collection time increased further to 652 ms due to the space charge effects. Ion losses were observed at high TW amplitudes (e.g., 15 V and 20 V). In addition, under space charge conditions (e.g., collection times of 163 and 652 ms), the signal of the analyte ions decreased with an increase in storage times for all TW amplitudes applied to the trapping region. For ion accumulation, the data indicate that gentler TW conditions must be utilized to minimize ion losses and fragments to benefit from the "in-SLIM" accumulation process. Wider SLIM tracks provided better performance than those with narrower tracks.

摘要

用于无损离子操控(SLIM)技术的结构已经展示了高分辨率的离子迁移率分离能力,并且具有将复杂的离子操控集成到单个实验平台中的灵活性。为了实现 IMS 分离,在注入分离用的包络之前,在 SLIM 内部(或在 SLIM 中)对离子进行捕获/积累,这提供了易于操作的优势,并减少了对 SLIM 外部专用离子阱的需求。为了充分表征离子积累过程,我们评估了 TW 幅度、离子收集时间和存储时间对“在 SLIM 内”积累过程的影响。该研究利用了由 5 个不同轨道组成的 SLIM 模块,每个轨道都具有特定的离子积累配置。在 TW 速度为 106 m/s 的情况下,研究了 TW 条件对包含 3 种肽混合物(kemptide、血管紧张素 II 和神经降压素)的积累过程的影响。除了 TW 幅度之外,还研究了离子积累时间/收集时间和存储时间的影响。总体而言,随着离子收集时间从 49 增加到 163 ms,分析物离子的信号增加,但当离子收集时间进一步增加到 652 ms 时,由于空间电荷效应,信号减小。在高 TW 幅度(例如 15 V 和 20 V)下观察到离子损失。此外,在空间电荷条件下(例如,收集时间为 163 和 652 ms),随着施加到捕获区域的所有 TW 幅度的存储时间的增加,分析物离子的信号减小。对于离子积累,数据表明,必须使用更温和的 TW 条件来最小化离子损失和碎片,以受益于“在 SLIM 内”积累过程。较宽的 SLIM 轨道比较窄的轨道提供更好的性能。

相似文献

1
Evaluating Ion Accumulation and Storage in Traveling Wave Based Structures for Lossless Ion Manipulations.
J Am Soc Mass Spectrom. 2023 Dec 6;34(12):2849-2856. doi: 10.1021/jasms.3c00348. Epub 2023 Nov 20.
3
Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.
Anal Chem. 2015 Nov 17;87(22):11301-8. doi: 10.1021/acs.analchem.5b02481. Epub 2015 Oct 28.
4
Accelerating prototyping experiments for traveling wave structures for lossless ion manipulations.
Talanta. 2022 Jul 1;244:123446. doi: 10.1016/j.talanta.2022.123446. Epub 2022 Apr 4.
6
Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations.
Anal Chem. 2016 Oct 18;88(20):10143-10150. doi: 10.1021/acs.analchem.6b02678. Epub 2016 Oct 7.
7
Traveling-Wave-Based Electrodynamic Switch for Concurrent Dual-Polarity Ion Manipulations in Structures for Lossless Ion Manipulations.
Anal Chem. 2019 Nov 19;91(22):14712-14718. doi: 10.1021/acs.analchem.9b03987. Epub 2019 Oct 30.
10
Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations.
Anal Chem. 2016 Sep 20;88(18):8949-8956. doi: 10.1021/acs.analchem.6b01914. Epub 2016 Aug 12.

引用本文的文献

本文引用的文献

3
A Flexible, Modular Platform for Multidimensional Ion Mobility of Native-like Ions.
J Am Soc Mass Spectrom. 2023 Jun 7;34(6):1175-1185. doi: 10.1021/jasms.3c00112. Epub 2023 May 12.
4
Development of a Structure for Lossless Ion Manipulations (SLIM) High Charge Capacity Array of Traps.
Anal Chem. 2023 Mar 7;95(9):4446-4453. doi: 10.1021/acs.analchem.2c05025. Epub 2023 Feb 23.
5
Collision Cross-Section Calibration Strategy for Lipid Measurements in SLIM-Based High-Resolution Ion Mobility.
J Am Soc Mass Spectrom. 2022 Jul 6;33(7):1229-1237. doi: 10.1021/jasms.2c00067. Epub 2022 Jun 2.
6
Accelerating prototyping experiments for traveling wave structures for lossless ion manipulations.
Talanta. 2022 Jul 1;244:123446. doi: 10.1016/j.talanta.2022.123446. Epub 2022 Apr 4.
8
Masked Multiplexed Separations to Enhance Duty Cycle for Structures for Lossless Ion Manipulations.
Anal Chem. 2021 Apr 13;93(14):5727-5734. doi: 10.1021/acs.analchem.0c04799. Epub 2021 Apr 2.
10
U-Shaped Mobility Analyzer: A Compact and High-Resolution Counter-Flow Ion Mobility Spectrometer.
Anal Chem. 2020 Jun 16;92(12):8356-8363. doi: 10.1021/acs.analchem.0c00868. Epub 2020 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验