Department of Anthropology, University of California San Diego, La Jolla, CA.
Department of Mathematics and Statistics, San Diego State University, San Diego, CA.
Chest. 2023 Dec;164(6):1492-1504. doi: 10.1016/j.chest.2023.07.019. Epub 2023 Jul 26.
Race-specific spirometry reference equations are used globally to interpret lung function for clinical, research, and occupational purposes, but inclusion of race is under scrutiny.
Does including self-identified race in spirometry reference equation formation improve the ability of predicted FEV values to explain quantitative chest CT abnormalities, dyspnea, or Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification?
Using data from healthy adults who have never smoked in both the National Health and Nutrition Survey (2007-2012) and COPDGene study cohorts, race-neutral, race-free, and race-specific prediction equations were generated for FEV Using sensitivity/specificity, multivariable logistic regression, and random forest models, these equations were applied in a cross-sectional analysis to populations of individuals who currently smoke and individuals who formerly smoked to determine how they affected GOLD classification and the fit of models predicting quantitative chest CT phenotypes or dyspnea.
Race-specific equations showed no advantage relative to race-neutral or race-free equations in models of quantitative chest CT phenotypes or dyspnea. Race-neutral reference equations reclassified up to 19% of Black participants into more severe GOLD classes, while race-neutral/race-free equations may improve model fit for dyspnea symptoms relative to race-specific equations.
Race-specific equations offered no advantage over race-neutral/race-free equations in three distinct explanatory models of dyspnea and chest CT scan abnormalities. Race-neutral/race-free reference equations may improve pulmonary disease diagnoses and treatment in populations highly vulnerable to lung disease.
种族特异性肺量计参考方程被全球用于解释临床、研究和职业目的的肺功能,但对种族的纳入存在争议。
将自我认定的种族纳入肺量计参考方程的形成是否能提高预测 FEV 值解释定量胸部 CT 异常、呼吸困难或全球慢性阻塞性肺疾病(GOLD)分类的能力?
利用从未吸烟的成年人在全国健康和营养调查(2007-2012 年)和 COPDGene 研究队列中的数据,生成了用于 FEV 的种族中性、无种族和种族特异性预测方程。使用敏感性/特异性、多变量逻辑回归和随机森林模型,将这些方程应用于当前吸烟和以前吸烟的人群的横断面分析,以确定它们如何影响 GOLD 分类和预测定量胸部 CT 表型或呼吸困难的模型拟合。
种族特异性方程在定量胸部 CT 表型或呼吸困难的模型中与种族中性或无种族方程相比没有优势。种族中性参考方程将多达 19%的黑人参与者重新分类为更严重的 GOLD 类别,而种族中性/无种族方程可能相对于种族特异性方程改善了对呼吸困难症状的模型拟合。
在三种不同的呼吸困难和胸部 CT 扫描异常解释模型中,种族特异性方程并没有优于种族中性/无种族方程。种族中性/无种族参考方程可能改善对高度易患肺部疾病人群的肺部疾病诊断和治疗。