Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy.
Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Viale Europa, Germaneto, 88100, Catanzaro, Italy.
J Neurol. 2023 Nov;270(11):5502-5515. doi: 10.1007/s00415-023-11892-y. Epub 2023 Jul 29.
Differentiating Progressive supranuclear palsy-Richardson's syndrome (PSP-RS) from PSP-Parkinsonism (PSP-P) may be extremely challenging. In this study, we aimed to distinguish these two PSP phenotypes using MRI structural data.
Sixty-two PSP-RS, 40 PSP-P patients and 33 control subjects were enrolled. All patients underwent brain 3 T-MRI; cortical thickness and cortical/subcortical volumes were extracted using Freesurfer on T1-weighted images. We calculated the automated MR Parkinsonism Index (MRPI) and its second version including also the third ventricle width (MRPI 2.0) and tested their classification performance. We also employed a Machine learning (ML) classification approach using two decision tree-based algorithms (eXtreme Gradient Boosting [XGBoost] and Random Forest) with different combinations of structural MRI data in differentiating between PSP phenotypes.
MRPI and MRPI 2.0 had AUC of 0.88 and 0.81, respectively, in differentiating PSP-RS from PSP-P. ML models demonstrated that the combination of MRPI and volumetric/thickness data was more powerful than each feature alone. The two ML algorithms showed comparable results, and the best ML model in differentiating between PSP phenotypes used XGBoost with a combination of MRPI, cortical thickness and subcortical volumes (AUC 0.93 ± 0.04). Similar performance (AUC 0.93 ± 0.06) was also obtained in a sub-cohort of 59 early PSP patients.
The combined use of MRPI and volumetric/thickness data was more accurate than each MRI feature alone in differentiating between PSP-RS and PSP-P. Our study supports the use of structural MRI to improve the early differential diagnosis between common PSP phenotypes, which may be relevant for prognostic implications and patient inclusion in clinical trials.
将进行性核上性麻痹-理查森综合征(PSP-RS)与进行性核上性麻痹-帕金森综合征(PSP-P)区分开来可能极具挑战性。在这项研究中,我们旨在使用 MRI 结构数据来区分这两种 PSP 表型。
纳入 62 例 PSP-RS、40 例 PSP-P 患者和 33 名对照者。所有患者均行脑 3T-MRI;采用 Freesurfer 软件从 T1 加权图像中提取皮质厚度和皮质/皮质下体积。我们计算了自动磁共振帕金森病指数(MRPI)及其包含第三脑室宽度的第二版(MRPI 2.0),并测试了它们的分类性能。我们还使用了两种基于决策树的机器学习(ML)分类方法(极端梯度提升 [XGBoost]和随机森林),使用不同的结构 MRI 数据组合来区分 PSP 表型。
MRPI 和 MRPI 2.0 在区分 PSP-RS 与 PSP-P 时的 AUC 分别为 0.88 和 0.81。ML 模型表明,MRPI 与容积/厚度数据的组合比每个特征单独使用更强大。两种 ML 算法的结果相似,在区分 PSP 表型方面性能最佳的 ML 模型使用 XGBoost 结合 MRPI、皮质厚度和皮质下体积(AUC 0.93±0.04)。在 59 例早期 PSP 患者的亚组中也获得了类似的结果(AUC 0.93±0.06)。
MRPI 与容积/厚度数据的组合比单独使用每个 MRI 特征更能准确地区分 PSP-RS 与 PSP-P。我们的研究支持使用结构 MRI 来改善常见 PSP 表型之间的早期鉴别诊断,这可能与预后意义和患者纳入临床试验相关。