Aracri Federica, Quattrone Andrea, Bianco Maria Giovanna, Sarica Alessia, De Maria Marida, Calomino Camilla, Crasà Marianna, Nisticò Rita, Buonocore Jolanda, Vescio Basilio, Vaccaro Maria Grazia, Quattrone Aldo
Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy.
Institute of Neurology, University "Magna Graecia", Catanzaro, Italy.
Front Neurol. 2024 May 24;15:1399124. doi: 10.3389/fneur.2024.1399124. eCollection 2024.
Distinguishing tremor-dominant Parkinson's disease (tPD) from essential tremor with rest tremor (rET) can be challenging and often requires dopamine imaging. This study aimed to differentiate between these two diseases through a machine learning (ML) approach based on rest tremor (RT) electrophysiological features and structural MRI data.
We enrolled 72 patients including 40 tPD patients and 32 rET patients, and 45 control subjects (HC). RT electrophysiological features (frequency, amplitude, and phase) were calculated using surface electromyography (sEMG). Several MRI morphometric variables (cortical thickness, surface area, cortical/subcortical volumes, roughness, and mean curvature) were extracted using Freesurfer. ML models based on a tree-based classification algorithm termed XGBoost using MRI and/or electrophysiological data were tested in distinguishing tPD from rET patients.
Both structural MRI and sEMG data showed acceptable performance in distinguishing the two patient groups. Models based on electrophysiological data performed slightly better than those based on MRI data only (mean AUC: 0.92 and 0.87, respectively; = 0.0071). The top-performing model used a combination of sEMG features (amplitude and phase) and MRI data (cortical volumes, surface area, and mean curvature), reaching AUC: 0.97 ± 0.03 and outperforming models using separately either MRI ( = 0.0001) or EMG data ( = 0.0231). In the best model, the most important feature was the RT phase.
Machine learning models combining electrophysiological and MRI data showed great potential in distinguishing between tPD and rET patients and may serve as biomarkers to support clinicians in the differential diagnosis of rest tremor syndromes in the absence of expensive and invasive diagnostic procedures such as dopamine imaging.
将震颤为主型帕金森病(tPD)与伴有静止性震颤的特发性震颤(rET)相区分具有挑战性,通常需要进行多巴胺成像。本研究旨在通过基于静止性震颤(RT)电生理特征和结构MRI数据的机器学习(ML)方法来区分这两种疾病。
我们纳入了72名患者,包括40名tPD患者和32名rET患者,以及45名对照受试者(HC)。使用表面肌电图(sEMG)计算RT电生理特征(频率、振幅和相位)。使用Freesurfer提取了几个MRI形态学变量(皮质厚度、表面积、皮质/皮质下体积、粗糙度和平均曲率)。测试了基于一种称为XGBoost的基于树的分类算法、使用MRI和/或电生理数据的ML模型,以区分tPD患者和rET患者。
结构MRI和sEMG数据在区分这两组患者方面均表现出可接受的性能。基于电生理数据的模型表现略优于仅基于MRI数据的模型(平均AUC分别为0.92和0.87;P = 0.0071)。表现最佳的模型使用了sEMG特征(振幅和相位)和MRI数据(皮质体积、表面积和平均曲率)的组合,AUC达到0.97±0.03,优于单独使用MRI(P = 0.0001)或EMG数据(P = 0.0231)的模型。在最佳模型中,最重要的特征是RT相位。
结合电生理和MRI数据的机器学习模型在区分tPD和rET患者方面显示出巨大潜力,并且在没有多巴胺成像等昂贵且有创的诊断程序的情况下,可作为生物标志物来支持临床医生对静止性震颤综合征进行鉴别诊断。