Novel Acylselenourea Derivatives: Dual Molecules with Anticancer and Radical Scavenging Activity.

作者信息

Astrain-Redin Nora, Raza Asif, Encío Ignacio, Sharma Arun K, Plano Daniel, Sanmartín Carmen

机构信息

Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain.

Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.

出版信息

Antioxidants (Basel). 2023 Jun 23;12(7):1331. doi: 10.3390/antiox12071331.

Abstract

Oxidative stress surrounding cancer cells provides them with certain growth and survival advantages necessary for disease progression. In this context, Se-containing molecules have gained attention due to their anticancer and antioxidant activity. In our previous work, we synthesized a library of 39 selenoesters containing functional groups commonly present in natural products (NP), which showed potent anticancer activity, but did not demonstrate high radical scavenger activity. Thus, 20 novel Se derivatives resembling NP have been synthesized presenting acylselenourea functionality in their structures. Radical scavenger activity was tested using DPPH assay and in vitro protective effects against ROS-induced cell death caused by HO. Additionally, antiproliferative activity was evaluated in prostate, colon, lung, and breast cancer cell lines, along with their ability to induce apoptosis. Compounds and showed potent cytotoxicity against the tested cancer cell lines, along with high selectivity indexes and induction of caspase-mediated apoptosis. These compounds exhibited potent and concentration-dependent radical scavenging activity achieving DPPH inhibition similar to ascorbic acid and trolox. To conclude, we have demonstrated that the introduction of Se in the form of acylselenourea into small molecules provides strong radical scavengers in vitro and antiproliferative activity, which may lead to the development of promising dual compounds.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf9e/10376326/51ec885be389/antioxidants-12-01331-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索